SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pironti Gianluigi) "

Sökning: WFRF:(Pironti Gianluigi)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Erhardsson, Mikael, et al. (författare)
  • Acyl ghrelin increases cardiac output while preserving right ventricular-pulmonary arterial coupling in heart failure
  • 2023
  • Ingår i: ESC Heart Failure. - : John Wiley & Sons. - 2055-5822.
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Acyl ghrelin increases cardiac output (CO) in heart failure with reduced ejection fraction (HFrEF). This could impair the right ventricular-pulmonary arterial coupling (RVPAC), both through an increased venous return and right ventricular afterload. We aim to investigate if acyl ghrelin increases CO with or without worsening the right-sided haemodynamics in HFrEF assessed by RVPAC.METHODS AND RESULTS: The Karolinska Acyl ghrelin Trial was a randomized double-blind placebo-controlled trial of acyl ghrelin versus placebo (120-min intravenous infusion) in HFrEF. RVPAC was assessed echocardiographically at baseline and 120 min. ANOVA was used for difference in change between acyl ghrelin versus placebo, adjusted for baseline values. Of the 30 randomized patients, 22 had available RVPAC (acyl ghrelin n = 12, placebo n = 10). Despite a 15% increase in CO in the acyl ghrelin group (from 4.0 (3.5-4.6) to 4.6 (3.9-6.1) L/min, P = 0.003), RVPAC remained unchanged; 5.9 (5.3-7.6) to 6.3 (4.8-7.5) mm·(m/s)-1 , P = 0.372, while RVPAC was reduced in the placebo group, 5.2 (4.3-6.4) to 4.8 (4.2-5.8) mm·(m/s)-1 , P = 0.035. Comparing change between groups, CO increased in the acyl ghrelin group versus placebo (P = 0.036) while RVPAC and the right ventricular pressure gradient remained unchanged.CONCLUSION: Treatment with acyl ghrelin increases CO while preserving or even improving RVPAC in HFrEF, possibly due to increased contractility, reduced PVR and/or reduced left sided filling pressures. These potential effects strengthen the role of acyl ghrelin therapy in HFrEF with right ventricular failure.
  •  
2.
  •  
3.
  • Liu, Zhengye, et al. (författare)
  • Mitochondrial NDUFA4L2 is a novel regulator of skeletal muscle mass and force
  • 2021
  • Ingår i: The FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 35:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The hypoxia-inducible nuclear-encoded mitochondrial protein NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) has been demonstrated to decrease oxidative phosphorylation and production of reactive oxygen species in neonatal cardiomyocytes, brain tissue and hypoxic domains of cancer cells. Prolonged local hypoxia can negatively affect skeletal muscle size and tissue oxidative capacity. Although skeletal muscle is a mitochondrial rich, oxygen sensitive tissue, the role of NDUFA4L2 in skeletal muscle has not previously been investigated. Here we ectopically expressed NDUFA4L2 in mouse skeletal muscles using adenovirus-mediated expression and in vivo electroporation. Moreover, femoral artery ligation (FAL) was used as a model of peripheral vascular disease to induce hind limb ischemia and muscle damage. Ectopic NDUFA4L2 expression resulted in reduced mitochondrial respiration and reactive oxygen species followed by lowered AMP, ADP, ATP, and NAD(+) levels without affecting the overall protein content of the mitochondrial electron transport chain. Furthermore, ec-topically expressed NDUFA4L2 caused a similar to 20% reduction in muscle mass that resulted in weaker muscles. The loss of muscle mass was associated with increased gene expression of atrogenes MurF1 and Mul1, and apoptotic genes caspase 3 and Bax. Finally, we showed that NDUFA4L2 was induced by FAL and that the Ndufa4l2 mRNA expression correlated with the reduced capacity of the muscle to generate force after the ischemic insult. These results show, for the first time, that mitochondrial NDUFA4L2 is a novel regulator of skeletal muscle mass and force. Specifically, induced NDUFA4L2 reduces mitochondrial activity leading to lower levels of important intramuscular metabolites, including adenine nucleotides and NAD(+), which are hallmarks of mitochondrial dysfunction and hence shows that dysfunctional mitochondrial activity may drive muscle wasting.
  •  
4.
  • Lund, Lars H., et al. (författare)
  • Acyl ghrelin improves cardiac function in heart failure and increases fractional shortening in cardiomyocytes without calcium mobilization
  • 2023
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and AimsGhrelin is an endogenous appetite-stimulating peptide hormone with potential cardiovascular benefits. Effects of acylated (activated) ghrelin were assessed in patients with heart failure and reduced ejection fraction (HFrEF) and in ex vivo mouse cardiomyocytes.Methods and resultsIn a randomized placebo-controlled double-blind trial, 31 patients with chronic HFrEF were randomized to synthetic human acyl ghrelin (0.1 µg/kg/min) or placebo intravenously over 120 min. The primary outcome was change in cardiac output (CO). Isolated mouse cardiomyocytes were treated with acyl ghrelin and fractional shortening and calcium transients were assessed. Acyl ghrelin but not placebo increased cardiac output (acyl ghrelin: 4.08 ± 1.15 to 5.23 ± 1.98 L/min; placebo: 4.26 ± 1.23 to 4.11 ± 1.99 L/min, P < 0.001). Acyl ghrelin caused a significant increase in stroke volume and nominal increases in left ventricular ejection fraction and segmental longitudinal strain and tricuspid annular plane systolic excursion. There were no effects on blood pressure, arrhythmias, or ischaemia. Heart rate decreased nominally (acyl ghrelin: 71 ± 11 to 67 ± 11  b.p.m.; placebo 69 ± 8 to 68 ± 10  b.p.m.). In cardiomyocytes, acyl ghrelin increased fractional shortening, did not affect cellular Ca2+ transients, and reduced troponin I phosphorylation. The increase in fractional shortening and reduction in troponin I phosphorylation was blocked by the acyl ghrelin antagonist D-Lys 3.ConclusionIn patients with HFrEF, acyl ghrelin increased cardiac output without causing hypotension, tachycardia, arrhythmia, or ischaemia. In isolated cardiomyocytes, acyl ghrelin increased contractility independently of preload and afterload and without Ca2+ mobilization, which may explain the lack of clinical side effects. Ghrelin treatment should be explored in additional randomized trials.
  •  
5.
  • Manti, Maria, et al. (författare)
  • Maternal androgen excess induces cardiac hypertrophy and left ventricular dysfunction in female mice offspring.
  • 2020
  • Ingår i: Cardiovascular research. - : Oxford University Press (OUP). - 1755-3245 .- 0008-6363. ; 116:3, s. 619-632
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycystic ovary syndrome (PCOS) is a common endocrinopathy that is suggested to increase the risk for cardiovascular disease. How PCOS may lead to adverse cardiac outcomes is unclear and here we hypothesized that prenatal exposure to dihydrotestosterone (DHT) and/or maternal obesity in mice induce adverse metabolic and cardiac programming in female offspring that resemble the reproductive features of the syndrome.The maternal obese PCOS phenotype was induced in mice by chronic high-fat-high-sucrose consumption together with prenatal DHT exposure. The prenatally androgenized (PNA) female offspring displayed cardiac hypertrophy during adulthood, an outcome that was not accompanied by aberrant metabolic profile. The expression of key genes involved in cardiac hypertrophy was up-regulated in the PNA offspring, with limited or no impact of maternal obesity. Furthermore, the activity of NADPH oxidase, a major source of reactive oxygen species in the cardiovascular system, was down-regulated in the PNA offspring heart. We next explored for early transcriptional changes in the heart of newly born PNA offspring, which could account for the long-lasting changes observed in adulthood. Neonatal PNA hearts displayed an up-regulation of transcription factors involved in cardiac hypertrophic remodelling and of the calcium-handling gene, Slc8a2. Finally, to determine the specific role of androgens in cardiovascular function, female mice were continuously exposed to DHT from pre-puberty to adulthood, with or without the antiandrogen flutamide. Continuous exposure to DHT led to adverse left ventricular remodelling, and increased vasocontractile responses, while treatment with flutamide partly alleviated these effects.Taken together, our results indicate that intrauterine androgen exposure programmes long-lasting heart remodelling in female mouse offspring that is linked to left ventricular hypertrophy and highlight the potential risk of developing cardiac dysfunction in daughters of mothers with PCOS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy