SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pisani Oliva) "

Sökning: WFRF:(Pisani Oliva)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Napolitano, Francesco, et al. (författare)
  • Role of Aberrant Striatal Dopamine D-1 Receptor/cAMP/Protein Kinase A/DARPP32 Signaling in the Paradoxical Calming Effect of Amphetamine
  • 2010
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 30:33, s. 11043-11056
  • Tidskriftsartikel (refereegranskat)abstract
    • Attention deficit/hyperactivity disorder (ADHD) is characterized by inattention, impulsivity, and motor hyperactivity. Several lines of research support a crucial role for the dopamine transporter (DAT) gene in this psychiatric disease. Consistently, the most commonly prescribed medications in ADHD treatment are stimulant drugs, known to preferentially act on DAT. Recently, a knock-in mouse [DAT-cocaine insensitive (DAT-CI)] has been generated carrying a cocaine-insensitive DAT that is functional but with reduced dopamine uptake function. DAT-CI mutants display enhanced striatal extracellular dopamine levels and basal motor hyperactivity. Herein, we showed that DAT-CI animals present higher striatal dopamine turnover, altered basal phosphorylation state of dopamine and cAMP-regulated phosphoprotein 32kDa (DARPP32) at Thr75 residue, but preserved D-2 receptor (D2R) function. However, although we demonstrated that striatal D-1 receptor (D1R) is physiologically responsive under basal conditions, its stimulus-induced activation strikingly resulted in paradoxical electrophysiological, behavioral, and biochemical responses. Indeed, in DAT-CI animals, (1) striatal LTP was completely disrupted, (2) R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5- tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297) treatment induced paradoxical motor calming effects, and (3) SKF 81297 administration failed to increase cAMP/protein kinase A (PKA)/DARPP32 signaling. Such biochemical alteration selectively affected dopamine D(1)Rs since haloperidol, by blocking the tonic inhibition of D2R, unmasked a normal activation of striatal adenosine A(2A) receptor-mediated cAMP/PKA/DARPP32 cascade in mutants. Most importantly, our studies highlighted that amphetamine, nomifensine, and bupropion, through increased striatal dopaminergic transmission, are able to revert motor hyperactivity of DAT-CI animals. Overall, our results suggest that the paradoxical motor calming effect induced by these drugs in DAT-CI mutants depends on selective aberrant phasic activation of D1R/cAMP/PKA/DARPP32 signaling in response to increased striatal extracellular dopamine levels.
  •  
3.
  • Xenopoulos, Marguerite A., et al. (författare)
  • How humans alter dissolved organic matter composition in freshwater: relevance for the Earth’s biogeochemistry
  • 2021
  • Ingår i: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 154:2, s. 323-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic matter (DOM) is recognized for its importance in freshwater ecosystems, but historical reliance on DOM quantity rather than indicators of DOM composition has led to an incomplete understanding of DOM and an underestimation of its role and importance in biogeochemical processes. A single sample of DOM can be composed of tens of thousands of distinct molecules. Each of these unique DOM molecules has their own chemical properties and reactivity or role in the environment. Human activities can modify DOM composition and recent research has uncovered distinct DOM pools laced with human markers and footprints. Here we review how land use change, climate change, nutrient pollution, browning, wildfires, and dams can change DOM composition which in turn will affect internal processing of freshwater DOM. We then describe how human-modified DOM can affect biogeochemical processes. Drought, wildfires, cultivated land use, eutrophication, climate change driven permafrost thaw, and other human stressors can shift the composition of DOM in freshwater ecosystems increasing the relative contribution of microbial-like and aliphatic components. In contrast, increases in precipitation may shift DOM towards more relatively humic-rich, allochthonous forms of DOM. These shifts in DOM pools will likely have highly contrasting effects on carbon outgassing and burial, nutrient cycles, ecosystem metabolism, metal toxicity, and the treatments needed to produce clean drinking water. A deeper understanding of the links between the chemical properties of DOM and biogeochemical dynamics can help to address important future environmental issues, such as the transfer of organic contaminants through food webs, alterations to nitrogen cycling, impacts on drinking water quality, and biogeochemical effects of global climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy