SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Planesas P.) "

Search: WFRF:(Planesas P.)

  • Result 1-21 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Graauw, Th., et al. (author)
  • The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L6-
  • Journal article (peer-reviewed)abstract
    • Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
2.
  • Falgarone, E., et al. (author)
  • CH+(1-0) and 13CH+(1-0) absorption lines in the direction of massive star-forming regions
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1
  • Journal article (peer-reviewed)abstract
    • We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue (CH+)-C-13 toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard the Herschel satellite. Both lines are seen only in absorption against the dust continuum emission of the star-forming regions. The CH+ absorption is saturated over almost the entire velocity ranges sampled by the lines-of-sight that include gas associated with the star-forming regions (SFR) and Galactic foreground material. The CH+ column densities are inferred from the optically thin components. A lower limit of the isotopic ratio [(CH+)-C-12]/[(CH+)-C-13]> 35.5 is derived from the absorptions of foreground material toward W49N. The column density ratio, N(CH+)/N(HCO+), is found to vary by at least a factor 10, between 4 and > 40, in the Galactic foreground material. Line-of-sight 12CH+ average abundances relative to total hydrogen are estimated. Their average value, N(CH+)/NH > 2.6 x 10(-8), is higher than that observed in the solar neighborhood and confirms the high abundances of CH+ in the Galactic interstellar medium. We compare this result to the predictions of turbulent dissipation regions (TDR) models and find that these high abundances can be reproduced for the inner Galaxy conditions. It is remarkable that the range of predicted N(CH+)/ N(HCO+) ratios, from 1 to similar to 50, is comparable to that observed.
  •  
3.
  • Neufeld, D.A., et al. (author)
  • Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:4, s. 108-
  • Journal article (peer-reviewed)abstract
    • We report the detection of strong absorption by interstellar hydrogen fluoride along the sight-line to the submillimeter continuum source G10.6-0.4 (W31C). We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1232.4763 GHz J=1-0 HF transition in the upper sideband of the Band 5a receiver. The resultant spectrum shows weak HF emission from G10.6-0.4 at LSR velocities in the range -10 to -3 km/s, accompanied by strong absorption by foreground material at LSR velocities in the range 15 to 50 km/s. The spectrum is similar to that of the 1113.3430 GHz 1(11)-0(00) transition of para-water, although at some frequencies the HF (hydrogen fluoride) optical depth clearly exceeds that of para-H2O. The optically-thick HF absorption that we have observed places a conservative lower limit of 1.6E+14 cm-2 on the HF column density along the sight-line to G10.6-0.4. Our lower limit on the HF abundance, 6E-9 relative to hydrogen nuclei, implies that hydrogen fluoride accounts for between ~ 30 and 100% of the fluorine nuclei in the gas phase along this sight-line. This observation corroborates theoretical predictions that - because the unique thermochemistry of fluorine permits the exothermic reaction of F atoms with molecular hydrogen - HF will be the dominant reservoir of interstellar fluorine under a wide range of conditions.
  •  
4.
  • Wild, W., et al. (author)
  • Millimetron—a large Russian-European submillimeter space observatory
  • 2009
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:1, s. 221-244
  • Journal article (peer-reviewed)abstract
    • Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
  •  
5.
  • Decin, L., et al. (author)
  • Water content and wind acceleration in the envelope around the oxygen-rich AGB star IK Tauri as seen by Herschel/HIFI
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L4-
  • Journal article (peer-reviewed)abstract
    • During their asymptotic giant branch evolution, low-mass stars lose a significant fraction of their mass through an intense wind, enriching the interstellar medium with products of nucleosynthesis. We observed the nearby oxygen-rich asymptotic giant branch star IK Tau using the high-resolution HIFI spectrometer onboard Herschel. We report on the first detection of (H2O)-O-16 and the rarer isotopologues (H2O)-O-17 and (H2O)-O-18 in both the ortho and para states. We deduce a total water content (relative to molecular hydrogen) of 6.6 x 10(-5), and an ortho-to-para ratio of 3:1. These results are consistent with the formation of H2O in thermodynamical chemical equilibrium at photospheric temperatures, and does not require pulsationally induced non-equilibrium chemistry, vaporization of icy bodies or grain surface reactions. High-excitation lines of (CO)-C-12, (CO)-C-13, (SiO)-Si-28, (SiO)-Si-29, (SiO)-Si-30, HCN, and SO have also been detected. From the observed line widths, the acceleration region in the inner wind zone can be characterized, and we show that the wind acceleration is slower than hitherto anticipated.
  •  
6.
  • Burillo, S. G., et al. (author)
  • Molecular line emission in NGC 1068 imaged with ALMA : I. An AGN-driven outflow in the dense molecular gas
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 567, s. 125-
  • Journal article (peer-reviewed)abstract
    • Aims. We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate.Methods. We have used the Atacama Large Millimeter Array (ALMA) to map the emission of a set of dense molecular gas (n(H2) ' 1056 cm3) tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3), and CS(7-6)) and their underlying continuum emission in the central r ∼ 2 kpc of NGC 1068 with spatial resolutions ∼0:3000:500 (∼20-35 pc for the assumed distance of D = 14 Mpc). Results. The sensitivity and spatial resolution of ALMA give an unprecedented detailed view of the distribution and kinematics of the dense molecular gas (n(H2) ≈ 1056cm3) in NGC 1068. Molecular line and dust continuum emissions are detected from a r ∼ 200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r ∼ 1:3 kpc starburst (SB) ring. Most of the emission in HCO+, HCN, and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the active galactic nucleus (AGN), betraying ongoing feedback. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20+6 10 pc. The Fourier decomposition of the gas velocity field indicates that rotation is perturbed by an inward radial flow in the SB ring and the bar region. However, the gas kinematics from r ∼ 50 pc out to r ∼ 400 pc reveal a massive (Mmol ∼ 2:7+0:9 1:2 × 107 M) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. Conclusions. The molecular outflow is likely launched when the ionization cone of the narrow line region sweeps the nuclear disk. The outflow rate estimated in the CND, dM=dt ∼ 63+21 37 M yr1, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion timescale of ≤1 Myr. The CND gas reservoir is likely replenished on longer timescales by efficient gas inflow from the outer disk. © ESO 2014.
  •  
7.
  • Harwit, M., et al. (author)
  • Polarisation observations of VY Canis Majoris H2O 5(32)-4(41) 620.701 GHz maser emission with HIFI
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L51-
  • Journal article (peer-reviewed)abstract
    • Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims. We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods. In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s(-1), which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results. We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings.
  •  
8.
  • Harwit, M., et al. (author)
  • Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L51-
  • Journal article (peer-reviewed)abstract
    • Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims. We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods. In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s(-1), which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results. We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings.
  •  
9.
  • Khouri, T., et al. (author)
  • The wind of W Hydrae as seen by Herschel I. The CO envelope
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. Article no. A5-
  • Journal article (peer-reviewed)abstract
    • Context. Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essential for understanding AGB evolution, including the rate of mass loss and isotopic ratios. Aims. We characterize the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments on board the Herschel Space Observatory and ground-based telescopes. (CO)-C-12 and (CO)-C-13 lines are used to constrain the intrinsic C-12/C-13 ratio from resolved HIFI lines. Methods. We combined a state-of-the-art molecular line emission code and a dust continuum radiative transfer code to model the CO lines and the thermal dust continuum. Results. The acceleration of the outflow up to about 5.5 km s(-1) is quite slow and can be represented by a beta-type velocity law with index beta = 5. Beyond this point, acceleration up the terminal velocity of 7 km s(-1) is faster. Using the J = 10-9, 9-8, and 6-5 transitions, we find an intrinsic C-12/C-13 ratio of 18 +/- 10 for W Hya, where the error bar is mostly due to uncertainties in the (CO)-C-12 abundance and the stellar flux around 4.6 mu m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at similar to 500 stellar radii. The radial dust emission intensity profile of our stellar wind model matches PACS images at 70 mu m out to 20 '' (or 800 stellar radii). For larger radii the observed emission is substantially stronger than our model predicts, indicating that at these locations there is extra material present. Conclusions. The initial slow acceleration of the wind may imply inefficient dust formation or dust driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M-circle dot or more. However, the uncertainty in the isotopologic ratio is large, which makes it difficult to set reliable limits on W Hya's main-sequence mass.
  •  
10.
  • Menten, K. M., et al. (author)
  • Herschel/HIFI deepens the circumstellar NH3 enigma
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L7-
  • Journal article (peer-reviewed)abstract
    • Context. Circumstellar envelopes (CSEs) of a variety of evolved stars have been found to contain ammonia (NH3) in amounts that exceed predictions from conventional chemical models by many orders of magnitude. Aims. The observations reported here were performed in order to better constrain the NH3 abundance in the CSEs of four, quite diverse, oxygen-rich stars using the NH3 ortho J(K) = 1(0)-0(0) ground-state line. Methods. We used the Heterodyne Instrument for the Far Infrared aboard Herschel to observe the NH3 J(K) = 1(0)-0(0) transition near 572.5 GHz, simultaneously with the ortho-H2O J(Ka,Kc) = 1(1,0)-1(0,1) transition, toward VY CMa, OH 26.5+0.6, IRC+10420, and IK Tau. We conducted non-LTE radiative transfer modeling with the goal to derive the NH3 abundance in these objects' CSEs. For the last two stars, Very Large Array imaging of NH3 radio-wavelength inversion lines were used to provide further constraints, particularly on the spatial extent of the NH3-emitting regions. Results. We find remarkably strong NH3 emission in all of our objects with the NH3 line intensities rivaling those of the ground state H2O line. The NH3 abundances relative to H-2 are very high and range from 2 x 10(-7) to 3 x 10(-6) for the objects we have studied. Conclusions. Our observations confirm and even deepen the circumstellar NH3 enigma. While our radiative transfer modeling does not yield satisfactory fits to the observed line profiles, it does lead to abundance estimates that confirm the very high values found in earlier studies. New ways to tackle this mystery will include further Herschel observations of more NH3 lines and imaging with the Expanded Very Large Array.
  •  
11.
  • Viti, S., et al. (author)
  • Molecular line emission in NGC 1068 imaged with ALMA II. The chemistry of the dense molecular gas
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. 28-
  • Journal article (peer-reviewed)abstract
    • Aims. We present a detailed analysis of Atacama Large Millimeter/submillimeter Array (ALMA) Bands 7 and 9 data of CO, HCO+, HCN, and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ~200 pc circumnuclear disc (CND) and the ~1.3 kpc starburst ring (SB ring) of NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim to determine the physical characteristics of the dense gas present in the CND, and to establish whether the different line intensity ratios we find within the CND, as well as between the CND and the SB ring, are due to excitation effects (gas density and temperature differences) or to a different chemistry.Methods. We estimate the column densities of each species in local thermodynamic equilibrium (LTE). We then compute large one-dimensional, non-LTE radiative transfer grids (using RADEX) by using only the CO transitions first, and then all the available molecules to constrain the densities, temperatures, and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas.Results. We find that, in general, the gas in the CND is very dense (>105 cm-3) and hot (T> 150 K), with differences especially in the temperature across the CND. The AGN position has the lowest CO/HCO+, CO/HCN, and CO/CS column density ratios. The RADEX analyses seem to indicate that there is chemical differentiation across the CND. We also find differences between the chemistry of the SB ring and some regions of the CND; the SB ring is also much colder and less dense than the CND. Chemical modelling does not succeed in reproducing all the molecular ratios with one model per region, suggesting the presence of multi-gas phase components.Conclusions. The LTE, RADEX, and chemical analyses all indicate that more than one gas-phase component is necessary to uniquely fit all the available molecular ratios within the CND. A higher number of molecular transitions at the ALMA resolution is necessary to determine quantitatively the physical and chemical characteristics of these components.
  •  
12.
  • Alcolea, J., et al. (author)
  • HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 559, s. (article nr.) A93-
  • Journal article (peer-reviewed)abstract
    • Aims.The study of the molecular gas in the circumstellar envelopes of evolved stars is normally undertaken by observing lines ofCO (and other species) in the millimetre-wave domain. In general, the excitation requirements of the observed lines are low at thesewavelengths, and therefore these observations predominantly probe the cold outer envelope while studying the warm inner regions ofthe envelopes normally requires sub-millimetre (sub-mm) and far-infrared (FIR) observational data.Methods.To gain insight into the physical conditions and kinematics of the warm (100–1000 K) gas around the red hyper-giantVY CMa, we performed sensitive high spectral resolution observations of molecular lines in the sub-mm/FIR using the HIFI instru-ment of theHerschelSpace Observatory. We observed CO, H2O, and other molecular species, sampling excitation energies from afew tens to a few thousand K. These observations are part of theHerschelguaranteed time key program HIFISTARS.Results.We detected theJ=6–5,J=10–9, andJ=16–15 lines of12CO and13CO at∼100, 300, and 750 K above the groundstate (and the13COJ=9–8 line). These lines are crucial for improving the modelling of the internal layers of the envelope aroundVY CMa. We also detected 27 lines of H2O and its isotopomers, and 96 lines of species such as NH3,SiO,SO,SO2HCN, OH andothers, some of them originating from vibrationally excited levels. Three lines were not unambiguously assigned.Conclusions.Our observations confirm that VY CMa’s envelope must consist of two or more detached components. The molecularexcitation in the outer layers is significantly lower than in the inner ones, resulting in strong self-absorbed profiles in molecular linesthat are optically thick in this outer envelope, for instance, low-lying lines of H2O. Except for the most abundant species, CO and H2O,most of the molecular emission detected at these sub-mm/FIR wavelengths arise from the central parts of the envelope. The spectrumof VY CMa is very prominent in vibrationally excited lines, which are caused by the strong IR pumping present in the central regions.Compared with envelopes of other massive evolved stars, VY CMa’s emission is particularly strong in these vibrationally excitedlines, as well as in the emission from less abundant species such as H13CN, SO, and NH3.
  •  
13.
  • Bujarrabal, V., et al. (author)
  • Herschel/HIFI observations of high-J CO transitions in the protoplanetary nebula CRL 618
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L3-
  • Journal article (peer-reviewed)abstract
    • Aims. We aim to study the physical conditions, particularly the excitation state, of the intermediate-temperature gas components in the protoplanetary nebula CRL 618. These components are particularly important for understanding the evolution of the nebula. Methods. We performed Herschel/HIFI observations of several CO lines in the far-infrared/sub-mm in the protoplanetary nebula CRL 618. The high spectral resolution provided by HIFI allows measurement of the line profiles. Since the dynamics and structure of the nebula is well known from mm-wave interferometric maps, it is possible to identify the contributions of the different nebular components (fast bipolar outflows, double shells, compact slow shell) to the line profiles. The observation of these relatively high-energy transitions allows an accurate study of the excitation conditions in these components, particularly in the warm ones, which cannot be properly studied from the low-energy lines. Results. The (CO)-C-12 J = 16-15, 10-9, and 6-5 lines are easily detected in this source. Both (CO)-C-13 J = 10-9 and 6-5 are also detected. Wide profiles showing spectacular line wings have been found, particularly in (CO)-C-12 J = 16-15. Other lines observed simultaneously with CO are also shown. Our analysis of the CO high-J transitions, when compared with the existing models, confirms the very low expansion velocity of the central, dense component, which probably indicates that the shells ejected during the last AGB phases were driven by radiation pressure under a regime of maximum transfer of momentum. No contribution of the diffuse halo found from mm-wave data is identified in our spectra, because of its low temperature. We find that the fast bipolar outflow is quite hot, much hotter than previously estimated; for instance, gas flowing at 100 km s(-1) must have a temperature higher than similar to 200 K. Probably, this very fast outflow, with a kinematic age
  •  
14.
  • Bujarrabal, V., et al. (author)
  • Herschel/HIFI observations of molecular emission in protoplanetary nebulae and young planetary nebulae
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. Article Number: A8-
  • Journal article (peer-reviewed)abstract
    • Aims. We aim to study the physical conditions, particularly the excitation state, of the intermediate-temperature gas in protoplanetary nebulae and young planetary nebulae (PPNe, PNe). The information that the observations of the different components deliver is of particular importance for understanding the evolution of these objects. Methods. We performed Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared/submillimeter range in a sample of ten nebulae. The high spectral resolution provided by HIFI allows the accurate measurement of the line profiles. The dynamics and evolution of these nebulae are known to result from the presence of several gas components, notably fast bipolar outflows and slow shells (that often are the fossil AGB shells), and the interaction between them. Because of the diverse kinematic properties of the different components, their emissions can be identified in the line profiles. The observation of these high-energy transitions allows an accurate study of the excitation conditions, particularly in the warm gas, which cannot be properly studied from the low-energy lines. Results. We have detected FIR/sub-mm lines of several molecules, in particular of (CO)-C-12, (CO)-C-13, and H2O. Emission from other species, like NH3, OH, (H2O)-O-18, HCN, SiO, etc., has been also detected. Wide profiles showing sometimes spectacular line wings have been found. We have mainly studied the excitation properties of the high-velocity emission, which is known to come from fast bipolar outflows. From comparison with general theoretical predictions, we find that CRL 618 shows a particularly warm fast wind, with characteristic kinetic temperature T-k greater than or similar to 200 K. In contrast, the fast winds in OH 231.8+4.2 and NGC 6302 are cold, T-k similar to 30 K. Other nebulae, like CRL 2688, show intermediate temperatures, with characteristic values around 100 K. We also discuss how the complex structure of the nebulae can affect our estimates, considering two-component models. We argue that the differences in temperature in the different nebulae can be caused by cooling after the gas acceleration (that is probably caused by shocks); for instance, CRL 618 is a case of very recent acceleration, less than similar to 100 yr ago, while the fast gas in OH 231.8+4.2 was accelerated similar to 1000 yr ago. We also find indications that the densest gas tends to be cooler, which may be explained by the expected increase of the radiative cooling efficiency with the density.
  •  
15.
  • Justtanont, Kay, 1965, et al. (author)
  • A HIFI preview of warm molecular gas around chi Cygni: first detection of H2O emission toward an S-type AGB star
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L6-
  • Journal article (peer-reviewed)abstract
    • Aims. A set of new, sensitive, and spectrally resolved, sub-millimeter line observations are used to probe the warm circumstellar gas around the S-type AGB star chi Cyg. The observed lines involve high rotational quantum numbers, which, combined with previously obtained lower-frequency data, make it posible to study in detail the chemical and physical properties of, essentially, the entire circumstellar envelope of chi Cyg. Methods. The data were obtained using the HIFI instrument aboard Herschel, whose high spectral resolution provides valuable information about the line profiles. Detailed, non-LTE, radiative transfer modelling, including dust radiative transfer coupled with a dynamical model, has been performed to derive the temperature, density, and velocity structure of the circumstellar envelope. Results. We report the first detection of circumstellar H2O rotational emission lines in an S-star. Using the high-J CO lines to derive the parameters for the circumstellar envelope, we modelled both the ortho-and para-H2O lines. Our modelling results are consistent with the velocity structure expected for a dust-driven wind. The derived total H2O abundance (relative to H-2) is (1.1 +/- 0.2) x 10(-5), much lower than that in O-rich stars. The derived ortho-to-para ratio of 2.1 +/- 0.6 is close to the high-temperature equilibrium limit, consistent with H2O being formed in the photosphere.
  •  
16.
  • Justtanont, Kay, 1965, et al. (author)
  • Herschel/HIFI observations of O-rich AGB stars: molecular inventory
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. Article Number: A144 -
  • Journal article (peer-reviewed)abstract
    • Aims. Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. Methods. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines. We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. Results. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho-and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J = 6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.
  •  
17.
  • Khouri, T., et al. (author)
  • The wind of W Hydrae as seen by Herschel II. The molecular envelope of W Hydrae
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. Art. no. A67-
  • Journal article (peer-reviewed)abstract
    • Context. The evolution of low- and intermediate-mass stars on the asymptotic giant branch (AGB) is mainly controlled by the rate at which these stars lose mass in a stellar wind. Understanding the driving mechanism and strength of the stellar winds of AGB stars and the processes enriching their surfaces with products of nucleosynthesis are paramount to constraining AGB evolution and predicting the chemical evolution of galaxies. Aims. In a previous paper we have constrained the structure of the outflowing envelope of W Hya using spectral lines of the (CO)-C-12 molecule. Here we broaden this study by including an extensive set of H2O and (SiO)-Si-28 lines. It is the first time such a comprehensive study is performed for this source. The oxygen isotopic ratios and the (SiO)-Si-28 abundance profile can be connected to the initial stellar mass and to crucial aspects of dust formation at the base of the stellar wind, respectively. Methods. We model the molecular emission observed by the three instruments on board Herschel Space Observatory using a state-of-the-art molecular excitation and radiative transfer code. We also account for the dust radiation field in our calculations. Results. We find an H2O ortho-to-para ratio of 2.5(-1.0)(+2.5), consistent with what is expected for an AGB wind. The O-16/O-17 ratio indicates that W Hya has an initial mass of about 1.5 M-circle dot. Although the ortho-and para-H2O lines observed by HIFI appear to trace gas of slightly different physical properties, we find that a turbulence velocity of 0.7 +/- 0.1 km s(-1) fits the HIFI lines of both spin isomers and those of (SiO)-Si-28 well. Conclusions. The modelling of H2O and (SiO)-Si-28 confirms the properties of the envelope model of W Hya, as derived from (CO)-C-12 lines, and allows us to constrain the turbulence velocity. The ortho-and para-(H2O)-O-16 and (SiO)-Si-28 abundances relative to H-2 are (6(2)(+3)) x 10(-4), (3(-1)(+2)) x 10(-4), and (3.3 +/- 0.8) x 10(-5), respectively, in agreement with expectations for oxygen-rich AGB outflows. Assuming a solar silicon-to-carbon ratio, the (SiO)-Si-28 line emission model is consistent with about one-third of the silicon atoms being locked up in dust particles.
  •  
18.
  • Neufeld, D. A., et al. (author)
  • Discovery of water vapour in the carbon star V Cygni from observations with Herschel/HIFI
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L5-
  • Journal article (peer-reviewed)abstract
    • We report the discovery of water vapour toward the carbon star V Cygni. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1(11)-0(00) para-water transition at 1113.3430 GHz in the upper sideband of the Band 4b receiver. The observed spectral line profile is nearly parabolic, but with a slight asymmetry associated with blueshifted absorption, and the integrated antenna temperature is 1.69 +/- 0.17 K km s(-1). This detection of thermal water vapour emission, carried out as part of a small survey of water in carbon-rich stars, is only the second such detection toward a carbon-rich AGB star, the first having been obtained by the Submillimeter Wave Astronomy Satellite toward IRC+ 10216. For an assumed ortho-to-para ratio of 3 for water, the observed line intensity implies a water outflow rate similar to 3-6 x 10(-5) Earth masses per year and a water abundance relative to H-2 of similar to 2-5 x 10(-6). This value is a factor of at least 10(4) larger than the expected photospheric abundance in a carbon-rich environment, and - as in IRC+ 10216 - raises the intriguing possibility that the observed water is produced by the vapourisation of orbiting comets or dwarf planets. However, observations of the single line observed to date do not permit us to place strong constraints upon the spatial distribution or origin of the observed water, but future observations of additional transitions will allow us to determine the inner radius of the H2O-emitting zone, and the H2O ortho-to-para ratio, and thereby to place important constraints upon the origin of the observed water emission.
  •  
19.
  • Neufeld, D. A., et al. (author)
  • The Widespread Occurrence of Water Vapor in the Circumstellar Envelopes of Carbon-Rich Asymptotic Giant Branch Stars: First Results From a Survey With Herschel/HIFI
  • 2011
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 727:2
  • Journal article (peer-reviewed)abstract
    • We report the preliminary results of a survey for water vapor in a sample of eight C stars with large mid-IR continuum fluxes: V384 Per, CIT 6, V Hya, Y CVn, IRAS 15194-5115, V Cyg, S Cep, and IRC+40540. This survey, performed using the HIFI instrument on board the Herschel Space Observatory, entailed observations of the lowest transitions of both ortho-and para-water: the 556.936 GHz 1(10)-1(01) and 1113.343 GHz 1(11)-0(00) transitions, respectively. Water vapor was unequivocally detected in all eight of the target stars. Prior to this survey, IRC+10216 was the only carbon-rich asymptotic giant branch (AGB) star from which thermal water emissions had been discovered, in that case with the use of the Submillimeter Wave Astronomy Satellite (SWAS). Our results indicate that IRC+10216 is not unusual, except insofar as its proximity to Earth leads to a large line flux that was detectable with SWAS. The water spectral line widths are typically similar to those of CO rotational lines, arguing against the vaporization of a Kuiper Belt analog being the general explanation for water vapor in carbon-rich AGB stars. There is no apparent correlation between the ratio of the integrated water line fluxes to the 6.3 mu m continuum flux-a ratio which measures the water outflow rate-and the total mass-loss rate for the stars in our sample.
  •  
20.
  • Schmidt, M. R., et al. (author)
  • Herschel/HIFI observations of the circumstellar ammonia lines in IRC+10216
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Journal article (peer-reviewed)abstract
    • Context. A discrepancy exists between the abundance of ammonia (NH3) derived previously for the circumstellar envelope (CSE) of IRC+10216 from far-IR submillimeter rotational lines and that inferred from radio inversion or mid-infrared (MIR) absorption transitions. Aims. To address the discrepancy described above, new high-resolution far-infrared (FIR) observations of both ortho-and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. Methods. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J = 3 level (three ortho-and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. The computed emission line profiles are compared with the new HIFI data, the radio inversion transitions, and the MIR absorption lines in the nu(2) band taken from the literature. Results. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8 +/- 0.5) x 10(-8) for ortho-NH3 and (3.2(-0.6)(+0.7)) x 10(-8) for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
  •  
21.
  • Teyssier, D., et al. (author)
  • Herschel/HIFI observations of red supergiants and yellow hypergiants I. Molecular inventory
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. A99 (article no.)-
  • Journal article (peer-reviewed)abstract
    • Context. Red supergiant stars (RSGs) and yellow hypergiant stars (YHGs) are believed to be the high-mass counterparts of stars in the asymptotic giant branch (AGB) and early post-AGB phases. As such, they are scarcer and the properties and evolution of their envelopes are still poorly understood. Aims. We study the mass-loss in the post main-sequence evolution of massive stars, through the properties of their envelopes in the intermediate and warm gas layers. These are the regions where the acceleration of the gas takes place and the most recent mass-loss episodes can be seen. Methods. We used the HIFI instrument on-board the Herschel Space Observatory to observe sub-millimetre and far-infrared (FIR) transitions of CO, water, and their isotopologues in a sample of two RSGs (NML Cyg and Betelgeuse) and two YHGs (IRC + 10420 and AFGL 2343) stars. We present an inventory of the detected lines and analyse the information revealed by their spectral profiles. A comparison of the line intensity and shape in various transitions is used to qualitatively derive a picture of the envelope physical structure. On the basis of the results presented in an earlier study, we model the CO and (CO)-C-13 emission in IRC + 10420 and compare it to a set of lines ranging from the millimetre to the FIR. Results. Red supergiants have stronger high-excitation lines than the YHGs, indicating that they harbour dense and hot inner shells contributing to these transitions. Consequently, these high-J lines in RSGs originate from acceleration layers that have not yet reached the circumstellar terminal velocity and have narrower profiles than their flat-topped lower-J counterparts. The YHGs tend to lack this inner component, in line with the picture of detached, hollow envelopes derived from studies at longer wavelengths. NH3 is only detected in two sources (NML Cyg and IRC + 10420), which are also observed to be the strongest water-line emitters of the studied sample. In contrast, OH is detected in all sources and does not seem to correlate with the water line intensities. We show that the IRC + 10420 model derived solely from millimetre low-J CO transitions is capable of reproducing the high-J transitions when the temperature in the inner shell is simply lowered by about 30%.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-21 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view