SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Platais I.) "

Sökning: WFRF:(Platais I.)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Martocchia, S., et al. (författare)
  • Age as a major factor in the onset of multiple populations in stellar clusters
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 473:2, s. 2688-2700
  • Tidskriftsartikel (refereegranskat)abstract
    • It is now well established that globular clusters (GCs) exhibit star-to-star light-element abundance variations (known as multiple populations, MPs). Such chemical anomalies have been found in (nearly) all the ancient GCs (more than 10 Gyr old) of our Galaxy and its close companions, but so far no model for the origin of MPs is able to reproduce all the relevant observations. To gain new insights into this phenomenon, we have undertaken a photometric Hubble Space Telescope survey to study clusters with masses comparable to that of old GCs, where MPs have been identified, but with significantly younger ages. Nine clusters in the Magellanic Clouds with ages between similar to 1.5 and 11 Gyr have been targeted in this survey. We confirm the presence of MPs in all clusters older than 6 Gyr and we add NGC 1978 to the group of clusters for which MPs have been identified. With an age of similar to 2 Gyr, NGC 1978 is the youngest cluster known to host chemical abundance spreads found to date. We do not detect evident star-to-star variations for slightly younger massive clusters (similar to 1.7 Gyr), thus pointing towards an unexpected age dependence for the onset of MPs. This discovery suggests that the formation of MPs is not restricted to the early Universe and that GCs and young massive clusters share common formation and evolutionary processes.
  •  
2.
  • Martocchia, S., et al. (författare)
  • Leveraging HST with MUSE : II. Na-abundance variations in intermediate age star clusters
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:1, s. 1200-1211
  • Tidskriftsartikel (refereegranskat)abstract
    • Ancient (>10 Gyr) globular clusters (GCs) show chemical abundance variations in the form of patterns among certain elements, e.g. N correlates with Na and anticorrelates with O. Recently, N abundance spreads have also been observed in massive star clusters that are significantly younger than old GCs, down to an age of similar to 2Gyr. However, so far N has been the only element found to vary in such young objects. We report here the presence of Na abundance variations in the intermediate age massive star clusters NGC 416 (similar to 6.5Gyr old) and Lindsay 1 (similar to 7.5Gyr old) in the Small Magellanic Cloud, by combining Hubble Space Telescope (HST) and European Southern Observatory Very Large Telescope MUSE observations. Using HST photometry, we were able to construct 'chromosome maps' and separate subpopulations with different N content, in the red giant branch of each cluster. MUSE spectra of individual stars belonging to each population were combined, resulting in high signal-to-noise spectra representative of each population, which were compared to search for mean differences in Na. We find a mean abundance variation of Delta[Na/Fe] = 0.18 +/- 0.04 dex for NGC 416 and Delta[Na/Fe] = 0.24 +/- 0.05 dex for Lindsay 1. In both clusters, we find that the population that is enhanced in N is also enhanced in Na, which is the same pattern to the one observed in ancient GCs. Furthermore, we detect a bimodal distribution of core-helium-burning red clump (RC) giants in the UV colour-magnitude diagram of NGC 416. A comparison of the stacked MUSE spectra of the two RCs shows the same mean Na abundance difference between the two populations. The results reported in this work are a crucial hint that star clusters of a large age range share the same origin: they are the same types of objects, but only separated in age.
  •  
3.
  • Martocchia, S., et al. (författare)
  • The search for multiple populations in Magellanic Cloud clusters - IV. Coeval multiple stellar populations in the young star cluster NGC 1978
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 477:4, s. 4696-4705
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that the similar to 2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the subgiant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Because of its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star formation epochs have occurred within NGC 1978. First, we use ultraviolet colour-magnitude diagrams (CMDs) to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 +/- 20 Myr between them. This is in tension with predictions from the asymptotic giant branch scenario for the origin of multiple populations. Second, we estimate the broadness of the main-sequence turn-off (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of similar to 65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extended MSTO in intermediate-age clusters, while it fully supports predictions from the stellar rotation model.
  •  
4.
  • Kamann, S., et al. (författare)
  • The effects of stellar rotation along the main sequence of the 100-Myr-old massive cluster NGC 1850
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 518:1, s. 1505-1521
  • Tidskriftsartikel (refereegranskat)abstract
    • Young star clusters enable us to study the effects of stellar rotation on an ensemble of stars of the same age and across a wide range in stellar mass and are therefore ideal targets for understanding the consequences of rotation on stellar evolution. We combine MUSE spectroscopy with HST photometry to measure the projected rotational velocities (Vsin i) of 2184 stars along the split main sequence and on the main sequence turn-off (MSTO) of the 100 Myr-old massive (10(5) M-circle dot) star cluster NGC 1850 in the Large Magellanic Cloud. At fixed magnitude, we observe a clear correlation between Vsin i and colour, in the sense that fast rotators appear redder. The average Vsin i values for stars on the blue and red branches of the split main sequence are similar to 100 km s(-1) and similar to 200 km s(-1), respectively. The values correspond to about 25 - 30 per cent and 50 - 60 per cent of the critical rotation velocity and imply that rotation rates comparable to those observed in field stars of similar masses can explain the split main sequence. Our spectroscopic sample contains a rich population of similar to 200 fast rotating Be stars. The presence of shell features suggests that 23 per cent of them are observed through their decretion discs, corresponding to a disc opening angle of 15 degrees. These shell stars can significantly alter the shape of the MSTO, hence care should be taken when interpreting this photometric feature. Overall, our findings impact our understanding of the evolution of young massive clusters and provide new observational constraints for testing stellar evolutionary models.
  •  
5.
  • Brogaard, K., et al. (författare)
  • Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members : III. Constraints from a subgiant
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Models of stellar structure and evolution can be constrained using accurate measurements of the parameters of eclipsing binary members of open clusters. Multiple binary stars provide the means to tighten the constraints and, in turn, to improve the precision and accuracy of the age estimate of the host cluster. In the previous two papers of this series, we have demonstrated the use of measurements of multiple eclipsing binaries in the old open cluster NGC 6791 to set tighter constraints on the properties of stellar models than was previously possible, thereby improving both the accuracy and precision of the cluster age. Aims. We identify and measure the properties of a non-eclipsing cluster member, V56, in NGC 6791 and demonstrate how this provides additional model constraints that support and strengthen our previous findings. Methods. We analyse multi-epoch spectra of V56 from FLAMES in conjunction with the existing photometry and measurements of eclipsing binaries in NGC6971. Results. The parameters of the V56 components are found to be Mp = 1.103 ± 0.008 Mpdbl and Ms = 0.974 ± 0.007 Mpdbl, Rp = 1.764 ± 0.099 Rpdbl and Rs = 1.045 ± 0.057 Rpdbl, Teff,p = 5447 ± 125 K and Teff,s = 5552 ± 125 K, and surface [Fe/H] = +0.29 ± 0.06 assuming that they have the same abundance. Conclusions. The derived properties strengthen our previous best estimate of the cluster age of 8.3 ± 0.3 Gyr and the mass of stars on the lower red giant branch (RGB), which is MRGB = 1.15 ± 0.02 Mpdbl for NGC 6791. These numbers therefore continue to serve as verification points for other methods of age and mass measures, such as asteroseismology.
  •  
6.
  • Brogaard, K., et al. (författare)
  • The blue straggler V106 in NGC 6791 : a prototype progenitor of old single giants masquerading as young
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:4, s. 5062-5072
  • Tidskriftsartikel (refereegranskat)abstract
    • We determine the properties of the binary star V106 in the old open cluster NGC 6791. We identify the system to be a blue straggler cluster member by using a combination of ground-based and Kepler photometry and multi-epoch spectroscopy. The properties of the primary component are found to be M-p similar to 1.67 M-circle dot, more massive than the cluster turn-off, with R-p similar to 1.91 R-circle dot and T-eff = 7110 +/- 100 K. The secondary component is highly oversized and overluminous for its low mass with M-s similar to 0.182 M-circle dot, R-s similar to 0.864 R-circle dot, and T-eff = 6875 +/- 200 K. We identify this secondary star as a bloated (proto) extremely low-mass helium white dwarf. These properties of V106 suggest that it represents a typical Algol-paradox system and that it evolved through a mass-transfer phase, which provides insight into its past evolution. We present a detailed binary stellar evolution model for the formation of V106 using the MESA code and find that the mass-transfer phase only ceased about 40 Myr ago. Due to the short orbital period (P = 1.4463 d), another mass-transfer phase is unavoidable once the current primary star evolves towards the red giant phase. We argue that V106 will evolve through a common-envelope phase within the next 100 Myr and merge to become a single overmassive giant. The high mass will make it appear young for its true age, which is revealed by the cluster properties. Therefore, V106 is potentially a prototype progenitor of old field giants masquerading as young.
  •  
7.
  • Brogaard, K., et al. (författare)
  • The blue straggler V106 in NGC6791 : A prototype progenitor of old single giants masquerading as young
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711. ; 481:4, s. 5062-5072
  • Tidskriftsartikel (refereegranskat)abstract
    • We determine the properties of the binary star V106 in the old open cluster NGC6791. We identify the system to be a blue straggler cluster member by using a combination of groundbased and Kepler photometry and multi-epoch spectroscopy. The properties of the primary component are found to be Mp ~ 1.67M⊙, more massive than the cluster turn-off, with Rp ~ 1.91R⊙ and Teff = 7110 ± 100 K. The secondary component is highly oversized and overluminous for its low mass with Ms ~ 0.182M⊙, R⊙ ~ 0.864R⊙, and T⊙ =6875±200 K. We identify this secondary star as a bloated (proto) extremely low-mass helium white dwarf. These properties of V106 suggest that it represents a typical Algol-paradox system and that it evolved through a mass-transfer phase, which provides insight into its past evolution. We present a detailed binary stellar evolution model for the formation of V106 using the MESA code and find that the mass-transfer phase only ceased about 40 Myr ago. Due to the short orbital period (P = 1.4463 d), another mass-transfer phase is unavoidable once the current primary star evolves towards the red giant phase. We argue that V106 will evolve through a common-envelope phase within the next 100 Myr and merge to become a single overmassive giant. The high mass will make it appear young for its true age, which is revealed by the cluster properties. Therefore, V106 is potentially a prototype progenitor of old field giants masquerading as young.
  •  
8.
  • Cabrera-Ziri, I., et al. (författare)
  • Searching for globular cluster chemical anomalies on the main sequence of a young massive cluster
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 495:1, s. 375-382
  • Tidskriftsartikel (refereegranskat)abstract
    • The spectroscopic and photometric signals of the star-to-star abundance variations found in globular clusters seem to be correlated with global parameters like the cluster's metallicity, mass, and age. Understanding this behaviour could bring us closer to the origin of these intriguing abundance spreads. In this work we use deep HST photometry to look for evidence of abundance variations in the main sequence of a young massive cluster NGC 419 (similar to 10(5) M-circle dot, similar to 1.4 Gyr). Unlike previous studies, here we focus on stars in the same mass range found in old globulars (similar to 0.75-1 M-circle dot), where light elements variations are detected. We find no evidence for N abundance variations among these stars in the Un - B and U - B colour-magnitude diagrams of NGC 419. This is at odds with the N variations found in old globulars like 47 Tuc, NGC 6352, and NGC 6637 with similar metallicity to NGC 419. Although the signature of the abundance variations characteristic of old globulars appears to be significantly smaller or absent in this young cluster, we cannot conclude if this effect is mainly driven by its age or its mass.
  •  
9.
  •  
10.
  • Hobbs, David, et al. (författare)
  • Gaia and the Astrometric Global Iterative Solution
  • 2008
  • Ingår i: Proceedings of IInternational Astronomical Union, IAU Symposium. ; 248, s. 119-120
  • Konferensbidrag (refereegranskat)abstract
    • Gaia is an ESA space astrometry mission due for launch in 2011-12. We describe part of the work carried out in the Gaia Data Processing and Analysis Consortium, namely the Astrometric Global Iterative Solution (AGIS) currently being implemented at the European Space Astronomy Center (ESAC) in Spain and largely based on algorithms developed at Lund Observatory. Some provisional results based on simulated observations of one million stars are presented, demonstrating convergence at microarcsec level independent of starting conditions.
  •  
11.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy