SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Polevoi A. R.) "

Sökning: WFRF:(Polevoi A. R.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kazakov, Ye O., et al. (författare)
  • Physics and applications of three-ion ICRF scenarios for fusion research
  • 2021
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 28:2
  • Forskningsöversikt (refereegranskat)abstract
    • This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H–D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H–4He and H–D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D–3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research.
  •  
2.
  • Na, Yong-Su, et al. (författare)
  • On benchmarking of simulations of particle transport in ITER
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results of benchmarking of core particle transport simulations by a collection of codes widely used in transport modelling of tokamak plasmas. Our analysis includes formulation of transport equations, difference between electron and ion solvers, comparison of modules of the pellet and edge gas fuelling on the ITER baseline scenario. During the first phase of benchmarking we address the particle transport effects in the stationary phase. Firstly, simulations are performed with identical sources, sinks, transport coefficients, and boundary conditions prescribed in the flattop H-mode phase. The transformation of ion particle transport equations is introduced so to directly compare their results to electron transport solvers. Secondly, the pellet fuelling models are benchmarked in various conditions to evaluate the dependency of the pellet deposition on the pellet volume, injection side, pedestal, and separatrix parameters. Thirdly, edge gas fuelling is benchmarked to assess sensitivities of source profile predictions to uncertainties in plasma conditions and detailed model assumptions. At the second phase, we address particle transport effects in the time- evolving plasma including the current ramp-up to the ramp-down phase. The ion and the electron solvers are benchmarked together. Differences between the simulation results of the solvers are investigated in terms of equilibrium, grid resolution, radial coordinate, radial grid distribution, and plasma volume evolution term. We found that the selection of the radial coordinate can yield prominent differences between the solvers mainly due to differences in the edge grid distribution. The simulations reveal that electron and ion solvers predict noticeably different density peaking for the same diffusion and pinch velocity while with the peaked profile of helium, expected in fusion reactors. The fuelling benchmarking shows that gas puffing is not efficient for core fuelling in H-modes and density control should be done by the high field side pellet injection in contrast to present machines.
  •  
3.
  • Loarte, A., et al. (författare)
  • H-mode plasmas in the pre-fusion power operation 1 phase of the ITER research plan
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The optimum conditions for access to and sustainment of H-mode plasmas and their expected plasma parameters in the pre-fusion power operation 1 (PFPO-1) phase of the ITER research plan, where the additional plasma heating will be provided by 20 MW of electron cyclotron heating, are assessed in order to identify key open R&D issues. The assessment is performed on the basis of empirical and physics-based scalings derived from present experiments and integrated modelling of these plasmas including a range of first-principle transport models for the core plasma. The predictions of the integrated modelling of ITER H-mode plasmas are compared with ITER-relevant experiments carried out at JET (low-collisionality high-current H modes) and ASDEX Upgrade (significant electron heating) for both global H-mode properties and scale lengths of density and temperature profiles finding reasonable agreement. Specific integration issues of the PFPO-1 H-mode plasma scenarios are discussed taking into account the impact of the specificities of the ITER tokamak design (level of ripple, etc).
  •  
4.
  • Pinches, S. D., et al. (författare)
  • Implementation of plasma simulators and plasma reconstruction workflows in ITER’s Integrated Modelling & Analysis Suite (IMAS)
  • 2017
  • Ingår i: 44th EPS Conference on Plasma Physics, EPS 2017. - : European Physical Society (EPS).
  • Konferensbidrag (refereegranskat)abstract
    • IMAS has been installed within the majority of the ITER Members and is being used to support ITPA activities including code benchmarking and validation. Sophisticated workflows, such as Plasma Simulators and those describing H&CD systems, have been adapted to IMAS and applied to ITER scenarios. The framework is considered sufficiently flexible to handle all foreseen approaches to the integrated (probabilistic) determination of measurement parameters (and their errors). The inclusion of UDA within the IMAS data Access Layer has allowed the fetching of IDSs directly from experimental databases and the demonstration of the first plasma reconstruction chain. An interactive Live Display in which signals are selected through a web interface has also been demonstrated. 
  •  
5.
  •  
6.
  • Schneider, Mireille, et al. (författare)
  • Simulation of heating and current drive sources for scenarios of the ITER research plan
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing Ltd. - 0029-5515 .- 1741-4326. ; 61:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting the impact of heating and current drive (H&CD) sources is essential to evaluate the performance of ITER plasmas and to subsequently optimise the scenarios for the four stages of the ITER research plan. This should be done in the context of global transport calculations of complete plasma discharges. For this purpose, a dedicated workflow has been developed in the ITER integrated modelling and analysis suite as a modular component to be used together with transport solvers to quantify the dynamics of H&CD sources for the different phases of a plasma discharge, including possible synergetic effects between the heating sources. This paper presents the results of the combined modelling of H&CD sources for the ITER DT baseline 15 MA/5.3 T scenario including the synergy between neutral beam injection (NBI) of deuterium, fusion-born alpha particles and ion cyclotron resonance heating (ICRH) at the fundamental frequency of deuterium, showing modest synergetic effects. The results of the combined H&CD sources for an ITER 7.5 MA/2.65 T helium plasma of the second pre-fusion power operation phase (PFPO-2) are also shown, exhibiting more significant synergetic effects between the fundamental ICRH minority hydrogen heating and NBI hydrogen beams. Finally, a study of electron cyclotron heating absorption for an ITER helium PFPO scenario at 7.5 MA/2.65 T is also presented with a discussion on the edge parasitic absorption that arises under specific conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy