SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pomp Stephan 1968 ) "

Sökning: WFRF:(Pomp Stephan 1968 )

  • Resultat 1-50 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Adili, Ali, et al. (författare)
  • Neutron-multiplicity experiments for enhanced fission modelling
  • 2017
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 9782759890200
  • Konferensbidrag (refereegranskat)abstract
    • The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.
  •  
2.
  • Al-Adili, Ali, et al. (författare)
  • Studying fission neutrons with 2E-2v and 2E
  • 2018
  • Ingår i: SCIENTIFIC WORKSHOP ON NUCLEAR FISSION DYNAMICS AND THE EMISSION OF PROMPT NEUTRONS AND GAMMA RAYS (THEORY-4). - : EDP Sciences. - 9782759890316
  • Konferensbidrag (refereegranskat)abstract
    • This work aims at measuring prompt-fission neutrons at different excitation energies of the nucleus. Two independent techniques, the 2E-2v and the 2E techniques, are used to map the characteristics of the mass-dependent prompt fission neutron multiplicity, 7(A), when the excitation energy is increased. The VERDI 2E-2v spectrometer is being developed at JRC-GEEL. The Fission Fragment (FF) energies are measured using two arrays of 16 silicon (Si) detectors each. The FFs velocities are obtained by time-of-flight, measured between micro-channel plates (MCP) and Si detectors. With MCPs placed on both sides of the fission source, VERDI allows for independent timing measurements for both fragments. Cf-252(sf) was measured and the present results revealed particular features of the 2E-2v technique. Dedicated simulations were also performed using the GEF code to study important aspects of the 2E-2v technique. Our simulations show that prompt neutron emission has a non-negligible impact on the deduced fragment data and affects also the shape of 17(A). Geometrical constraints lead to a total-kinetic energy-dependent detection efficiency. The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of Cf-252(sf) and another one of thermal-neutron induced fission in U-235(n,f). Results from Cf-252(sf) are reported here.
  •  
3.
  • Gomez L, Ana Maria, 1993-, et al. (författare)
  • Determination of the Plasma Delay Time in PIPS detectors for fission fragments at the LOHENGRIN spectrometer
  • 2023
  • Ingår i: 15<sup>th</sup> International Conference on Nuclear Data for Science and Technology (ND2022). - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The VElocity foR Direct particle Identification spectrometer (VERDI) is a 2E-2v fission spectrometer that allows the measurement of the total mass distribution of secondary fission fragments with a resolving power of 1-2 u. It consists of two time-of-flight (ToF) arms, with one Micro Channel Plate (MCP) detector and up to 32 Silicon PIPS (Passive Implanted Planar Silicon) detectors per arm. The MCPs provide the start timing signals and the PIPS detectors provide both the energy and the stopping ToF signals. In real conditions, the PIPS signals are affected by the formation of plasma from the interaction between the heavy ions and the detector material. The plasma contributes to a reduction in signal amplitude, resulting in a Pulse Height Defect (PHD), and introduces a signal delay, known as Plasma Delay Time (PDT). An experiment to characterize the PDT and PHD was performed at the LOHENGRIN recoil separator of the Institut Laue Langevin (ILL). Characteristic fission fragments from the 239Pu(n,f) reaction were separated based on their A/Q and E/Q ratios, allowing the measurement of a wide range of energies from 21 to 110 MeV and masses between 80 and 149 u. Six PIPS detectors were characterized to study their individual responses to the PDT and PHD effects. The signals were recorded in a digital acquisition system to completely exploit the offline analysis capabilities. Achieved combined timing and energy resolutions for fission fragments varied between 72(2) ps and 100(4) ps and 1.4% - 2% (FWHM), respectively. Preliminary PHD and PDT data are presented from the masses A=85, 95, 130 and 143. The PHD trends are strongly correlated with both the ion energy and mass. The PDT, on the other hand, shows a strong variation as a function of the ion kinetic energy but a smaller dependence on the ion mass.
  •  
4.
  • Jansson, Kaj, 1987-, et al. (författare)
  • The impact of neutron emission on correlated fission data from the 2E-2v method
  • 2018
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 54
  • Tidskriftsartikel (refereegranskat)abstract
    • The double-energy double-velocity (2E-2v) method allows assessing fission-fragment mass yields prior to and after prompt neutron emission with high resolution. It is, therefore, considered as a complementary technique to assess average prompt neutron multiplicity as a function of fragment properties. We have studied the intrinsic features of the 2E-2v method by means of event-wise generated fission-fragment data and found short-comings in the method itself as well as in some common practices of application. We find that the 2E-2v method leads to large deviations in the correlation between the prompt neutron multiplicity and pre-neutron mass, which deforms and exaggerates the so-called “sawtooth” shape of nubar(A). We have identified the treatment of prompt neutron emission from the fragments as the origin of the problem. The intrinsic nature of this deficiency risks to render 2E-2v experiments less interesting. We suggest a method to correct 2E-2v data that can even be applied on existing measurements.
  •  
5.
  • Jansson, Kaj, 1987-, et al. (författare)
  • The new double energy-velocity spectrometer VERDI
  • 2017
  • Ingår i: ND 2016: INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY. - Les Ulis : EDP Sciences. - 9782759890200
  • Konferensbidrag (refereegranskat)abstract
    • VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.
  •  
6.
  • Al-Adili, Ali, et al. (författare)
  • Isomer yields in nuclear fission
  • 2021
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 256
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of angular momentum in the fission process is still an open question. To shed light on this topic, we started a series of measurements at the IGISOL-JYFLTRAP facility in Finland. Highprecision measurements of isomeric yield ratios (IYR) are performed with a Penning trap, partly with the aim to extract average root-mean-square (rms) quantities of fragment spin distributions. The newly installed Phase-Imaging Ion-Cyclotron Resonance (PI-ICR) technique allows the separation of masses down to tens of keV, which is suffcient to disentangle many isomers. In this paper, we first summarize the previous measurements on the neutron and proton-induced fission of uranium and thorium, e.g. the odd cadmium and indium isotopes (119 ≤ A ≤ 127). The measurements revealed systematic trends as function of mass number, which stimulated further exploration. A recent measurement was performed at IGISIOL and several new IYR data will soon be published, for the first time. Secondly, we employ the TALYS nuclear-reaction code to model one of the newly measured isomer yields. Detailed GEF and TALYS calculations are discussed for the fragment angular momentum distribution in 134I.
  •  
7.
  • Al-Adili, Ali, et al. (författare)
  • Prompt fission neutron yields in thermal fission of U-235 and spontaneous fission of Cf-252
  • 2020
  • Ingår i: Physical Review C. - : American Physical Society (APS). - 2469-9985 .- 2469-9993. ; 102:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The sharing of excitation energy between the fission fragments is one of the key issues in studying nuclear fission. One way to address this is by studying prompt-fission neutron multiplicities as a function of other fission observables such as the mass, (nu) over bar (A). These are vital benchmark data for both fission and nuclear deexcitation models, putting constrains on the fragment excitation energy and hence on the competing prompt neutron/gamma-ray emission. Despite numerous detailed studies, recent measurements done at JRC-Geel with the SCINTIA array in the epithermal region show surprisingly strong discrepancies to earlier thermal fission data and the Wahl systematics. Purpose: The purpose was to perform measurements of the prompt-fission neutron multiplicity, as a function of fragment mass and total kinetic energy (TKE), in U-235(n(th), f) and Cf-252(sf), to verify and extend the SCINTIA results. Another goal was to validate the analysis methods, and prepare for planned investigations at excitation energies up to 5.5 MeV. Methods: The experiments were conducted at the former 7 MV Van de Graaff facility in JRC-Geel, using a Twin Frisch-Grid Ionization Chamber and two liquid scintillation detectors. A neutron beam with an average energy of 0.5 MeV was produced via the Li-7(p,n) reaction. The neutrons were thermalized by a 12 cm thick block of paraffin. Digital data acquisition systems were utilized. Comprehensive simulations were performed to verify the methodology and to investigate the role of the mass and energy resolution on measured (nu) over bar (A) and (nu) over bar (TKE) values. The simulation results also revealed that the partial derivative(nu) over bar/partial derivative A and partial derivative(TKE) over bar/partial derivative(nu) over bar are affected by the mass and energy resolution. However, the effect is small for the estimated resolutions of this work. Detailed Fluka simulations were performed to calculate the fraction of thermal neutron-induced fission, which was estimated to be about 98%. Results: The experimental results on (nu) over bar (A) are in good agreement with earlier data for Cf-252(sf). For U-235(n(th), f), the (nu) over bar (A) data is very similar to the data obtained with SCINTIA, and therefore we verify these disclosed discrepancies to earlier thermal data and to the Wahl evaluation. The experimental results on (nu) over bar (TKE) are also in agreement with the data at epithermal energies. For Cf-252(sf) a slope value of partial derivative(TKE) over bar/partial derivative(nu) over bar = (-12.9 f 0.2) MeV/n was obtained. For U-235(n(th), f) the value is (-12.0 +/- 0.1) MeV/n. Finally, the neutron spectrum in the center-of-mass system was derived and plotted as a function of fragment mass. Conclusions: This work clearly proves the lack of accurate correlation between fission fragment and neutron data even in the best-studied reactions. The new results highlight the need of a new evaluation of the prompt-fission multiplicity for U-225(n(th), f).
  •  
8.
  • Alcayne, V., et al. (författare)
  • A segmented total energy detector (sTED) for (n, gamma) cross section measurements at n_TOF EAR2
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The neutron time-of-flight facility n_TOF is characterised by its high instantaneous neutron intensity, high resolution and broad neutron energy spectra, specially conceived for neutron-induced reaction cross section measurements. Two Time-Of-Flight (TOR) experimental areas are available at the facility: experimental area 1 (EAR1), located at the end of the 185 m horizontal flight path from the spallation target, and experimental area 2 (EAR2), placed at 20 m from the target in the vertical direction. The neutron fluence in EAR2 is similar to 300 times more intense than in EARL in the relevant time-of-flight window. EAR2 was designed to carry out challenging cross-section measurements with low mass samples (approximately 1 mg), reactions with small cross-sections or/and highly radioactive samples. The high instantaneous fluence of EAR2 results in high counting rates that challenge the existing capture systems. Therefore, the sTED detector has been designed to mitigate these effects. In 2021, a dedicated campaign was done validating the performance of the detector up to at least 300 keV neutron energy. After this campaign, the detector has been used to perform various capture cross section measurements at n_TOF EAR2.
  •  
9.
  • Alcayne, V., et al. (författare)
  • A Segmented Total Energy Detector (sTED) optimized for (n,ϒ) cross-section measurements at n_TOF EAR2
  • 2024
  • Ingår i: Radiation Physics and Chemistry. - : Elsevier. - 0969-806X .- 1879-0895. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutron time-of-flight facility n_TOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at n_TOF EAR2.
  •  
10.
  • Balibrea-Correa, J., et al. (författare)
  • First measurement of the 94Nb(n,γ) cross section at the CERN n_TOF facility
  • 2023
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the crucial ingredients for the improvement of stellar models is the accurate knowledge of neutron capture cross-sections for the different isotopes involved in the s-,r- and i- processes. These measurements can shed light on existing discrepancies between observed and predicted isotopic abundances and help to constrain the physical conditions where these reactions take place along different stages of stellar evolution.In the particular case of the radioactive 94Nb, the 94Nb(n,γ) cross-section could play a role in the determination of the s-process production of 94Mo in AGB stars, which presently cannot be reproduced by state-of-the-art stellar models. There are no previous 94Nb(n,γ) experimental data for the resolved and unresolved resonance regions mainly due to the difficulties in producing highquality samples and also due to limitations in conventional detection systems commonly used in time-of-flight experiments.Motivated by this situation, a first measurement of the 94Nb(n,γ) reaction was carried out at CERN n_TOF, thereby exploiting the high luminosity of the EAR2 area in combination with a new detection system of small-volume C6D6-detectors and a high quality 94Nb-sample. The latter was based on hyper-pure 93Nb material activated at the high-flux reactor of ILL-Grenoble. An innovative ring-configuration detection system in close geometry around the capture sample allowed us to significantly enhance the signal-to-background ratio. This set-up was supplemented with two conventional C6D6-detectors and a highresolution LaCl3(Ce)-detector, which will be employed for addressing reliably systematic effects and uncertainties.At the current status of the data analysis, 18 resonance in 94Nb+n have been observed for the first time in the neutron energy range from thermal up to 10 keV.
  •  
11.
  • Cannarozzo, Simone, et al. (författare)
  • Global comparison between experimentally measured isomeric yield ratios and nuclear model calculations
  • 2023
  • Ingår i: European Physical Journal A. - : Springer. - 1434-6001 .- 1434-601X. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The level density steers transition probabilities between different states in the decay and de-excitation of excited nuclei. Reliable level density modelling is, therefore, key in describing, e.g., de-excitation of fission fragments, with implications on neutron and gamma-rays multiplicities, and also manifested in the population of isomeric states. We test six currently used level density models and the spin distribution in the level density by comparing calculations with measured isomeric yield ratios. The model calculations are performed with the TALYS code and experimental data for nuclear reactions populating spin isomers are retrieved from the EXFOR database. On average, calculations are in agreement with measured data. However, we find that the population of the high-spin state in an isomeric pair is clearly favoured in all of the six studied level density models. Further studies are then performed on the three used phenomenological level density models, to investigate the significance of their effect. We find that a significant reduction of the spin width distribution improves the agreement between calculated and experimentally observed isomeric yield ratios. This result is independent of the incident particle in the nuclear reaction. The needed reduction of the spin width distribution to comply with empirical data has, e.g., implications for studies in angular momentum generation in fission using isomeric yield rations, calculations of anti-neutrino spectra from nuclear reactors, as well as neutron and gamma-ray multiplicities in nuclear reactor calculations.
  •  
12.
  • Cannarozzo, Simone (författare)
  • Isomeric yield ratio studies in nuclear reactions and alpha-particle induced fission of Thorium
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Despite decades of research since the initial discovery of nuclear fission, numerous unresolved questions still persist. It is known empirically that fission fragments emerge with high angular momentum. The mechanism responsible for the generation of the large angular momenta observed is one of these open questions. Since the characteristics of fission fragments are not directly measurable, experimentally accessible observables are used to derive the angular momenta using nuclear model codes. One of these observables is the yield ratio between fission products produced in different isomeric states, i.e., metastable energy levels of the same nucleus.In this thesis, a study of the level density models implemented in the nuclear model code TALYS is presented. Simulated and experimental isomeric yield ratios of a large number of nuclear reactions is compared. The results show a bias in the models that favours the population of the high-spin states and that this can be produced by the overestimation of the spin width distribution. The reason for this study is to improve the models then used in the angular momentum calculation. Moreover, the isomeric yield ratio measurement of twenty-one FFs is presented. The measurement was performed using the JYFLTRAP system at the University of Jyväskylä. The fission fragments were produced by the 32 MeV alpha-particle induced fission of 232Th. The analysis process, involving different identification and correction methods, and preliminary results are presented.
  •  
13.
  • Domingo-Pardo, C., et al. (författare)
  • Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF
  • 2023
  • Ingår i: European Physical Journal A. - : Springer. - 1434-6001 .- 1434-601X. ; 59:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This article presents a few selected developments and future ideas related to the measurement of (n,γ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with γ-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area.
  •  
14.
  • Domingo-Pardo, C., et al. (författare)
  • Compton imaging for enhanced sensitivity (n,gamma) cross section TOF experiments : Status and prospects
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Radiative neutron-capture cross sections are of pivotal importance in many fields such as nucle-osynthesis studies or innovative reactor technologies. A large number of isotopes have been measured with high accuracy, but there are still a large number of relevant isotopes whose cross sections could not be experimentally determined yet, at least with sufficient accuracy and completeness, owing to limitations in detection techniques, sample production methods or in the facilities themselves. In the context of the HYMNS (High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions) project over the last six years we have developed a novel detection technique aimed at background suppression in radiative neutron-capture time-of-flight measurements. This new technique utilizes a complex detection set-up based on position-sensitive radiation-detectors deployed in a Compton-camera array configuration. The latter enables to implement gamma-ray imaging techniques, which help to disentangle true capture events arising from the sample under study and contaminant background events from the surroundings. A summary on the main developments is given in this contribution together with an update on recent experiments at CERN n_TOF and an outlook on future steps.
  •  
15.
  • Domingo-Pardo, C., et al. (författare)
  • The neutron time-of-flight facility n_TOF at CERN Recent facility upgrades and detector developments
  • 2023
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics (IOP). - 1742-6588 .- 1742-6596. ; 2586
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on an idea by Carlo Rubbia, the n_TOF facility at CERN has been operating for over 20 years. It is a neutron spallation source, driven by the 20 GeV/c proton beam from the CERN PS accelerator. Neutrons in a very wide energy range (from GeV, down to sub-eV kinetic energy) are generated by a massive Lead spallation target feeding two experimental areas. EAR1, horizonal with respect to the proton beam direction is set at 185 meters from the spallation target. EAR2, on the vertical line from the spallation source, is placed at 20 m. Neutron energies for experiments are selected by the time-of-flight technique (hence the name n_TOF), while the long flight paths ensure a very good energy resolution. Over one hundred experiments have been performed by the n_TOF Collaboration at CERN, with applications ranging from nuclear astrophysics (synthesis of the heavy elements in stars, big bang nucleosynthesis, nuclear cosmo-chronology), to advanced nuclear technologies (nuclear data for applications, nuclear safety), as well as for basic nuclear science (reaction mechanisms, structure and decay of highly excited compound states). During the planned shutdown of the CERN accelerator complex between 2019 and 2021, the facility went through a substantial upgrade with a new target-moderator assembly, refurbishing of the neutron beam lines and experimental areas. An additional measuring and irradiation station (the NEAR Station) has been envisaged and its capabilities for performing material test studies and new physics opportunities are presently explored. An overview of the facility and of the activities performed at CERN is presented in this contribution, with a particular emphasis on the most relevant experiments for nuclear astrophysics.
  •  
16.
  • Dupont, E., et al. (författare)
  • Overview of the dissemination of n_TOF experimental data and resonance parameters
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The n_TOF neutron time-of-flight facility at CERN is used for nuclear data measurements. The n_TOF Collaboration works closely with the Nuclear Reaction Data Centres (NRDC) network to disseminate the experimental data through the international EXFOR library. In addition, the Collaboration helps integrate the results in the evaluated library projects. The present contribution describes the dissemination status of n_TOF results, their impact on evaluated libraries and ongoing efforts to provide n_TOF resonance parameters in ENDF-6 format for further use by evaluation projects.
  •  
17.
  • Fission Product Yields Data Current status and perspectives : Summary report of an IAEA Technical meeting
  • 2016
  • Proceedings (redaktörskap) (övrigt vetenskapligt/konstnärligt)abstract
    • A Technical Meeting on Fission Product Yields Data: current status and perspectives, was held from 23 to 26 May 2016, at the IAEA, Vienna. The purpose of the meeting was to review the current status of Fission Product Yield data, and discuss the progress in measurements, theories, evaluation and covariances. The presentations, technical discussions and recommendations of the meeting are given in detail in this summary report.
  •  
18.
  • Gao, Zhihao, et al. (författare)
  • Applying machine learning methods for the analysis of two-dimensional mass spectra
  • 2023
  • Ingår i: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 59:169
  • Tidskriftsartikel (refereegranskat)abstract
    • In a measurement of isomeric yield-ratios in fission, the Phase-Imaging Ion-Cyclotron-Resonance technique, which projects the radial motions of ions in the Penning trap (JYFLTRAP) onto a position-sensitive micro-channel plate detector, has been applied. To obtain the yield ratio, that is the relative population of two states of an isomer pair, a novel analysis procedure has been developed to determine the number of detected ions in each state, as well as corrections for the detector efficiency and decay losses. In order to determine the population of the states in cases where their mass difference is too small to reach full separation, a Bayesian Gaussian Mixture model was implemented. The position-dependent efficiency of the micro-channel plate detector was calibrated by mapping it with 133Cs+ ions, and a Gaussian Process was trained with the position data to construct an efficiency function that could be used to correct the recorded distributions. The obtained numbers of counts of excited and ground-state ions were used to derive the isomeric yield ratio, taking into account decay losses as well as feeding from precursors.
  •  
19.
  • Gao, Zhihao, et al. (författare)
  • Benchmark of a multi-physics Monte Carlo simulation of an ionguide for neutron-induced fission products
  • 2022
  • Ingår i: European Physical Journal. - : Springer Nature. - 1286-0042 .- 1286-0050. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • To enhance the production of medium-heavy,neutron-rich nuclei, and to facilitate measurements of independentyields of neutron-induced fission, a proton-toneutronconverter and a dedicated ion guide for neutroninducedfission have been developed for the IGISOL facilityat the University of Jyväskylä. The ion guide holds thefissionable targets, and the fission products emerging fromthe targets are collected in helium gas and transported to thedownstream experimental stations.Acomputer model, basedon a combination of MCNPX for modeling the neutron production,the fission code GEF, and GEANT4 for the transportof the fission products, was developed. The model willbe used to improve the setup with respect to the productionand collection of fission products. In this paper we benchmarkthe model by comparing simulations to a measurementin which fission products were implanted in foils located atdifferent positions in the ion guide. In addition, the productsfrom neutron activation in the titanium foil and the uraniumtargets are studied. The result suggests that the neutron fluxat the high-energy part of the neutron spectrum is overestimatedby approximately 40%.However, the transportation offission products in the uranium targets agrees with the experimentwithin 10%. Furthermore, the simulated transportationof fission products in the helium gas achieves almost perfectagreement with the measurement. Hence, we conclude thatthe model, after correction for the neutron flux, is well suitedfor optimization studies of future ion guide designs.
  •  
20.
  • Gao, Zhihao, et al. (författare)
  • Fission studies at IGISOL/JYFLTRAP : Simulations of the ion guide for neutron-induced fission and comparison with experimental data
  • 2020
  • Ingår i: ND 2019. - : EDP Sciences. - 9782759891061
  • Konferensbidrag (refereegranskat)abstract
    • For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation.In order to allow fission yield measurements in the low yield regions, towards the tails and in the symmetric part of the mass distribution, the stopping and extraction efficiency of the ion guide has to be significantly improved. This objective can be achieved by increasing the size while introducing electric field guidance using a combination of static electrodes and an RF-carpet. To this end, the GEANT4 model is used to optimise the design of such an ion guide.
  •  
21.
  • Gao, Zhihao (författare)
  • Isomeric yield ratios in nuclear fission
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Isomeric yield ratios (IYR), referring to the relative yield of the high spin states of a nucleus to the total yield of all observed states, is an observable of nuclear fission that has the potential to improve our understanding of the fission dynamics. Apart from that, systematic observations of IYRs can also contribute to other areas, such as the validation of fission models, modelling of the r-process in stellar nucleosynthesis, studies of the antineutrino mixing angle, the safety of present-day nuclear reactors, and the design of advanced reactor systems.With these motivations in mind, an IYR measurement in proton-induced fission was performed at the IGISOL facility in Jyväskylä, Finland. In the measurement, the Penning trap JYFLTRAP was used to separate the excited state from the ground state and to project those onto a position-sensitive MCP detector. The obtained phase images were used to train a Bayesian Gaussian Mixture model to identify the states. After considering corrections for the detector efficiency and radioactive decay, 19 IYRs were obtained.In this thesis, the measurement of IYRs with the IGISOL technique is described, and a systematic study of IYRs in proton-induced fission is presented. Furthermore, the measured ratios are compared with calculations using three different models: the Madland-England (ME) model, the fission model GEF, and the combination of GEF + TALYS. The experimental results show that, in general, the IYR decreases with the spins of measured states. While this, to some degree, confirms the ME model, variations in the IYR between nuclides with the same spin assignments reveal that the model is too simple to predict individual ratios. Furthermore,discrepancies in the IYRs between the measurement and GEF are observed in most cases, indicating a need to optimize the performance of GEF against nuclear data from proton-induced fission. The combination of GEF + TALYS results in an overall under estimation of the observedIYRs, which could be explained by the different assumptions used in GEF and TALYS.To investigate how the angular momenta of the primary fission fragments relate to the IYRs, a surrogate model of GEF has been developed. By reproducing the measured IYR with the calculated ratios from the model, the average angular momentum Jav, is deduced. The Jav for fission products with a mass number greater than 131 show a mass dependency which fits the parameterisation proposed by J. Wilson et al,. For IYRs in the mass region 119 ≤ A < 132, in which no measurements are presented by Wilson, a decrease in the Jav with increasing mass number is observed for the first time.Besides the study of IYRs, a benchmark of a multi-physics simulation model of the ion guide for neutron-induced fission products has been performed using γ-ray spectroscopy data. The results of the benchmark show that the high-energy part of the neutron flux from the simulation with MCNPX is overestimated by about 40 %, while the ion transportation simulated with GEANT4 agrees well with the experimental data. Based on the benchmark, the ion guide can be optimized to achieve high enough intensities of the collected ions to reach reasonable measurement times. In the next step, the addition of electric fields is considered to direct the ions in and to reduce the ion drifting time. However, this task lies outside the scope of this PhD thesis.
  •  
22.
  • Gao, Zhihao, et al. (författare)
  • Isomeric yield ratios in proton-induced fission of 238U
  • 2023
  • Ingår i: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 108:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Isomeric yield ratios are an important observable in nuclear fission as they can guide model development by providing insight into the angular momentum generation. Furthermore, isomeric yield ratios are important in applications for nuclear energy, as well as in the study of the r-process in stellar nucleosynthesis, and in the antineutrino mixing angle from reactor spectra. In nuclear data evaluations, the Madland-England model is commonly used to estimate isomeric yield ratios that have not been measured.Purpose: To measure isomeric yield ratios in 25-MeV proton-induced fission of 238U, and to compare the result with the values obtained from the Madland-England model and the fission model code GEF. Furthermore, to evaluate whether the predictions of GEF can be improved by coupling it to the nuclear reaction code TALYS.Methods: Isomeric yield ratios in 25-MeV proton-induced fission of 238U have been measured at the Ion GuideIsotope Separate On-Line facility. The excited state and the ground state were separated by mass using the Phase-Imaging Ion-Cyclotron-Resonance technique in the double Penning trap JYFLTRAP. The number of counts of each state was extracted from the phase-images using a Bayesian Gaussian Mixture model and, after corrections fordetector efficiency and decay, the isomeric yield ratios were derived. The experimental values have been compared with the calculated results from the Madland-England model and the GEF code. Furthermore, GEF has been combined with the nuclear reaction code TALYS, in order to take advantage of the latter codes’ implementation of the Hauser-Feshbach formalism, and the results have been compared with the experimental values.Results: From the measurements, 19 new isomeric yield ratios in 25-MeV proton-induced fission of 238U are reported and are, together with another 12 isomeric yield ratios (IYRs) from a previous campaign, compared with the model calculations. It is shown that, though the models manage to capture some of the features observed, there is room for improvement.Conclusions: As predicted by the Madland-England model, a strong correlation between the measured IYRs and the spins of the long-lived states of the fission products is confirmed. However, the IYRs also vary between nuclides with the same spin-parity of the two states, and systematic trends in the IYRs of close-lying isotopes and isotones with similar nuclear configurations are observed.From the comparison of the experimental data with the prediction of GEF it is concluded that more data from proton-induced fission are needed to optimize the internal parameters of GEF. Furthermore, using a combination of GEF and TALYS in most cases results in an underestimation of the yield ratios. This might be explained by an underestimation of the angular momentum on the initial fission fragments by GEF. Altogether, these results highlight the possibility to use measurements of IYRs to improve model predictions and to study the angular momentum generation in nuclear fission.
  •  
23.
  • Gao, Zhihao, et al. (författare)
  • New design and simulation of the ion guide for neutron-induced fission products at the IGISOL facility
  • 2023
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 284
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of independent fission yield distributions in neutron-induced fission at high neutron energies are important for our fundamental understanding of the fission process, and are also relevant for reactor physics applications. So far, measurements of independent fission yields in proton-induced fission have been performed at the IGISOL facility at the University of Jyväskylä, using the Penning trap as a high resolving-power mass-filter. In order to also facilitate measurements of neutron-induced fission, a dedicated ion guide and a proton-to-neutron converter was developed. However, the first measurement indicates that fewer fission products than expected reach the Penning trap. To explore potential reasons and possible improvements, a simulation model was also developed and benchmarked. The benchmark showed that the model is able to reproduce the performance of the ion guide remarkably well and that the main reason for the low yield of fission products is the low collection efficiency of the ion guide.Based on the benchmark, a new ion guide is being designed. In the new design, the positions of the uranium targets and volume of the ion guide have been changed to increase the collection of fission products. This results in a five-fold increase of the yield. However, the collection efficiency of the new ion guide still needs to be improved in order to achieve intensities of the extracted fission products that are large enough to allow for reasonable measurement times.Because the volume of the ion guide is increased significantly, the extraction time of the ions is expected to be longer than that from the previous ion guide. Therefore, an electric field guidance system that consists of a combination of a stationary electric field and an RF-carpet is considered to be deployed. The stationary field, produced from a set of DC-ring electrodes, accelerates the ions towards the RF-carpet at end plate of the ion guide. The RF-carpet consists of a time-dependent field, produced from a radio-frequent structure of concentric rings, with a DC-component that guides the ions towards the exit hole in the center of the end plate. In this paper we present the current status of the simulations and design of the new ion guide.
  •  
24.
  • Garcia-Infantes, F., et al. (författare)
  • First high resolution measurement of neutron capture resonances in Yb-176 at the n_TOF CERN facility.
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Several international agencies recommend the study of new routes and new facilities for producing radioisotopes with application to nuclear medicine. Lu-177 is a versatile radioisotope used for therapy and diagnosis (theranostics) of cancer with good success in neuroendocrine tumours that is being studied to be applied to a wider range of tumours. Lu-177 is produced in few nuclear reactors mainly by the neutron capture on Lu-176. However, it could be produced at high -intensity accelerator-based neutron facilities. The energy of the neutrons in accelerator-based neutron facilities is higher than in thermal reactors. Thus, experimental data on the Yb-176(n,(sic)) cross-section in the eV and keV region are mandatory to calculate accurately the production of Yb-177, which beta decays to 177Lu. At present, there are not experimental data available from thermal to 3 keV of the Yb-176(n,(sic)) cross-section. In addition, there is no data in the resolved resonance region (RRR). This contribution shows the first results of the Yb-176 capture measurement performed at the n_TOF facility at CERN.
  •  
25.
  • Gomez L, Ana Maria, 1993- (författare)
  • Simulations And Experiments Of Plasma-Induced Effects In Silicon Detectors
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • When an atomic nucleus undergoes fission, two fragments with different mass and kinetic energy are emitted. The highly unstable fission fragments (FFs) evaporate prompt neutrons soon after the nucleus splits. A precise measurement of both, the mass yield distribution of the FFs and the average prompt neutron emission, $\bar{\nu}$, is important not only for current nuclear technologies but also for the development of future technologies such as Generation IV nuclear power plants. Moreover, the experimental determination of the mass yield distributions, both pre- and post-neutron emission, is valuable for testing fission models. Additionally, a precise measurement of the average neutron multiplicity as a function of the FFs mass, , is crucial in the understanding of how the excitation energy is shared between nascent FFs. The VElocity foR DIrect particle identification spectrometer (VERDI) is designed to achieve pre- and post-fission mass distributions with resolutions between 1-2 u. VERDI is a double-energy double-velocity instrument that consists of two arms. On each arm is operated one Microchannel Plate detector (MCP) for the collection of the FFs start time and up to 32 Passive Implanted Planar Silicon (PIPS) detectors for the stop time and energy detection of the FFs. However, challenges in the experimental measurements with VERDI arise due to the high degree of ionization (plasma) in the detector material from the interaction with the FFs. The plasma causes a delay in the charge carriers' migration for the signal start, known as the plasma delay time effect (PDT). Furthermore, the recombination of charge carriers in the plasma causes a shrinking in the signal's height, known as pulse height defect (PHD). This phenomenon leads to inaccuracies in the measurement of FFs mass distributions and increased systematic uncertainties. Previous studies on PDT and PHD have shown varying behaviors across different detector types, which motivated dedicated studies in the type of PIPS detectors used in VERDI. An experimental campaign to characterize the PDT and PHD in PIPS detectors was conducted in the LOHENGRIN recoil separator, which is part of the ILL nuclear facility in Grenoble, France. Measurements of FFs in a range of masses between 80 u and 149 u, with energies between 20 MeV to 110 MeV, were taken to fully characterize six PIPS detectors. The resulting PDT and PHD values were 1 ns to 4 ns and 2 MeV to 10 MeV respectively. The PDT and PHD exhibited consistent energy and mass dependencies across the detectors, which enables the possibility of an event-by-event correction of VERDI data. In this thesis, the basis for discussing the results of the studies of the PDT and PHD effects will be presented.
  •  
26.
  • Gorelov, D., et al. (författare)
  • Measuring independent yields of fission products using a penning trap
  • 2015
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:7, s. 869-871
  • Tidskriftsartikel (refereegranskat)abstract
    • A new method for determining independent fission products is used in an experiment at the Accelerator Laboratory of the University of Jyväskylä. The method combines the chemical universality of the ion guide technique and the unique properties of the Penning trap. A beam of charged particles is formed by stopping fission products in gaseous helium. The Penning trap is employed as a highly accurate filter to identify particles by their mass. The yields of fission products are determined by the ion count downstream of the trap. The setup’s mass resolving power is on the order of 105 with a radio frequency excitation time of 400 ms. Such high mass resolution occasionally allows us not only to separate nuclides but to separate the isomeric and ground states of nuclei as well. Independent yields of fission products are measured in the fission reaction of the 232Th isotope by protons with an energy of 25 MeV. A short description of the method ae nd soexperimental data are supplememnted by the results fro theoretical calculations.
  •  
27.
  • Gustavsson, Cecilia, Dr, 1973-, et al. (författare)
  • Citizen science in radiation research
  • 2020
  • Ingår i: ND 2019. - : EDP Sciences. - 9782759891061
  • Konferensbidrag (refereegranskat)abstract
    • A growing trend in science is that research institutions reach out to members of the public for participating in research. The reasons for outreach are many, spanning from the desire to collect and/or analyse large sets of data efficiently, to the idea of including the general public on a very fundamental level in science-making and ultimately decision-making. The presented project is curriculum-based and carried out in 240 lower secondary school classes (pupils of age 13-16). The task, as designed by the participating universities, is to collect mushrooms, soil and animal droppings from different parts of Sweden, do preliminary sample preparation and analyses and send the samples to the university institutions for radioactivity measurement. Behind the project is a desire to compare today’s levels of 137Cs with those deposited right after the Chernobyl accident in 1986, but also to study the exchange of caesium between organisms as well as the impacts of biological and geological processes on uptake and retention. The scientific outcome is a geodatabase with the 137Cs activity (Bq/m2) present in the Swedish environment, where radioactivity data can be linked to the species (fungi, competing species, animals foraging), forest type, land type, land use and other environmental factors. The science question is of interest to the general public as foraging for mushrooms, as well as spending recreational time in forests is widely popular in Sweden. In this article, we will discuss the current status of the project and the observations we have made about how well the public can participate in scientific research. Focus will be on organization of the project, such as logistics, preparation of supportive material, feedback and communication between researchers and schools. We will present observations about the impact the project has had on the participants, based on quantitative and qualitative evaluations.
  •  
28.
  • Hambsch, F. -J, et al. (författare)
  • Prompt Neutron Emission Correlations with Fission Fragment Properties
  • 2018
  • Ingår i: Fission And Properties Of Neutron-Rich Nuclei. - : World Scientific. - 9789813229433 ; , s. 503-512
  • Konferensbidrag (refereegranskat)abstract
    • The investigation of the dynamics of the nuclear fission process has been a standing research topic at the JRC-Geel during the past decades. Recently the focus was put on the de-excitation of fission fragments through the emission of prompt neutrons and gamma-rays. To this end new detector systems were developed at JRC-Geel, e.g. a position sensitive ionization chamber used in conjunction with the neutron scintillator array SCINTIA. The array has been tested using the spontaneous fission of Cf-252. The goal is to study correlations of fission fragments with prompt neutron emission in the resolved resonance region. No strong fluctuations of the average prompt neutron multiplicity for the strongest resonances in U-235 were observed. From the present data the mass-dependent neutron multiplicity, v(A), was generated. The v(A) distribution shows a more pronounced dip around the doubly magic mass A = 132 and at very low masses around A similar to 80 compared to the literature. In addition, a steeper slope for v(TKE) is observed. Cross checking with fragment data clearly shows a narrower mass and total kinetic energy (TKE) distribution. The 2E-2v spectrometer VERDI (VElocity foR Direct mass Identification) became operational. For Cf-252(sf) superior mass resolution is observed compared to a twin Frisch-grid ionization chamber. For post-neutron mass distributions still some issues need to be solved and v(A), being the difference of pre- and post-neutron mass distributions, is still deviating from literature data. Eventually, VERDI will provide a complementary measurement technique to assess v(A) and v(TKE). In addition, an experimental campaign to measure v(A) as a function of incident neutron energy for different actinides has been started. First tests show promising results.
  •  
29.
  • Jansson, Kaj, 1987-, et al. (författare)
  • Measurement of the 6Li(n,α)t neutron standard cross-section at the GELINA facility
  • 2017
  • Ingår i: ND 2016. - Les Ulis : EDP Sciences. - 9782759890200
  • Konferensbidrag (refereegranskat)abstract
    • The Li-6(n,alpha)t reaction cross-section is an established standard due to its relatively high crosssection as well as its high Q-value. However, it is only considered a neutron standard up to 1 MeV, because in the neutron energy region 1-3 MeV there exist discrepancies of several per cents between recent measurements [1,2] and evaluated data files [3]. It has been speculated [4] that neglecting of the particle leaking effect might be part of the explanation why there is a disagreement in this region. Based on R-matrix calculations, in the region around 2 MeV, one also expects three excitation levels of Li-7 to significantly influence the cross section [5]. In order to resolve these discrepancies, we perform measurements at the GELINA facility at JRC-Geel with two Frisch-gridded ionisation chambers. The Li-6(n,alpha)t cross section is measured relative to the U-235(n,f) standard. In order to solve previous encountered problems [6], the setup has been modified and moved to a new flight path station. In this proceeding we show that several problems have been eliminated and discuss possible solutions to newly arisen problems, due to the changed experimental conditions. Preliminary results from new data taken during 2016 with the updated setup are presented.
  •  
30.
  • Lantz, Mattias, 1971-, et al. (författare)
  • Gamma spectroscopy methodology for large amounts of environmental samples in Sweden 30 years after the Chernobyl accident
  • 2020
  • Ingår i: ND 2019. - : EDP Sciences. - 9782759891061
  • Konferensbidrag (refereegranskat)abstract
    • In a Swedish citizen science project, more than 200 elementary school classes participated in collecting fungi, soil samples, and droppings from deer and wild boar, from all over Sweden. The samples have been sent to a laboratory at Uppsala University where they are being analyzed through gamma spectroscopy with a shielded HPGe detector. The main objective is to scan the samples for 137Cs from the Chernobyl accident and compare the data with measurements from 1986, but uptake of naturally occuring radionuclides like 40K and radon daughters will also be determined. Together with the soil samples, transfer factors will be derived, and correlations for these factors will be sought for different species of fungi and soil types. The potential for correlating the results with different biological processes will also be investigated, in part through the collected animal droppings. This is a work in progress where the present status of the experimental setup and methodology are presented. Issues with the initial approach for corrections are discussed and preliminary results are presented.
  •  
31.
  •  
32.
  • Ledoux, X., et al. (författare)
  • The Neutrons for Science Facility at SPIRAL-2
  • 2018
  • Ingår i: Radiation Protection Dosimetry. - : OXFORD UNIV PRESS. - 0144-8420 .- 1742-3406. ; 180:1-4, s. 115-119
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the Li-7(p, n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.
  •  
33.
  • Ledoux, X., et al. (författare)
  • The neutrons for science facility at SPIRAL-2
  • 2017
  • Ingår i: ND 2016. - Les Ulis : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Numerous domains, in fundamental research as well as in applications, require the study of reactions induced by neutrons with energies from few MeV up to few tens of MeV. Reliable measurements also are necessary to improve the evaluated databases used by nuclear transport codes. This energy range covers a large number of topics like transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. A new facility called Neutrons For Science (NFS) is being built for this purpose on the GANIL site at Caen (France). NFS is composed of a pulsed neutron beam for time-of-flight facility as well as irradiation stations for cross-section measurements. Neutrons will be produced by the interaction of deuteron and proton beams, delivered by the SPIRAL-2 linear accelerator, with thick or thin converters made of beryllium or lithium. Continuous and quasi-mono-energetic spectra will be available at NFS up to 40 MeV. In this fast energy region, the neutron flux is expected to be up to 2 orders of magnitude higher than at other existing time-of-flight facilities. In addition, irradiation stations for neutron-, proton- and deuteron-induced reactions will allow performing cross-section measurements by the activation technique. After a description of the facility and its characteristics, the experiments to be performed in the short and medium term will be presented.
  •  
34.
  • Lerendegui-Marco, J., et al. (författare)
  • New detection systems for an enhanced sensitivity in key stellar (n,γ) measurements
  • 2023
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant and massive stars. However, neutron capture measurements via the time-of-flight (TOF) technique on key s-process nuclei are often challenging. Difficulties arise from the limited mass (∼mg) available and the high sample-related background in the case of the unstable s-process branching points. Measurements on neutron magic nuclei, that act as s-process bottlenecks, are affected by low (n,γ) cross sections and a dominant neutron scattering background. Overcoming these experimental challenges requires the combination of facilities with high instantaneous flux, such as n_TOFEAR2, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution reviews some of the latest detector developments in detection systems for (n,γ) measurements at n_TOF, such as i-TED, an innovative detection system which exploits the Compton imaging technique to reduce the dominant neutron scattering background and s-TED, a highly segmented total energy detector intended for high flux facilities. The discussion will be illustrated with results of the first measurement of key the s-process branching-point reaction 79Se(n,γ).
  •  
35.
  • Lerendegui-Marco, J., et al. (författare)
  • New perspectives for neutron capture measurements in the upgraded CERN-n_TOF Facility
  • 2023
  • Ingår i: 15th International Conference on Nuclear Data for Science and Technology, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The n_TOF facility has just undergone in 2021 a major upgrade with the installation of its third generation spallation target that has been designed to optimize the performance of the two n_TOF time-of-flight lines. This contribution describes the key features and limitations for capture measurements in the two beam lines prior to the target upgrade and presents first results of (n,gamma) measurements carried out as part of the commissioning of the upgraded facility. In particular, the energy resolution, a key factor for both increasing the signal-to background ratio and obtaining accurate resonance parameters, has been clearly improved for the 20 m long vertical beam-line with the new target design while keeping the remarkably high resolution of the long beamline n_TOF-EAR1. The improvements in the n_TOF neutron beam-lines need to be accompanied by improvements in the instrumentation. A review is given on recent detector R&D projects aimed at tackling the existing challenges and further improving the capabilities of this facility.
  •  
36.
  • Mardor, Israel, et al. (författare)
  • Determining spontaneous fission properties by direct mass measurements with the FRS Ion Catcher
  • 2020
  • Ingår i: ND 2019. - : EDP Sciences. - 9782759891061
  • Konferensbidrag (refereegranskat)abstract
    • We present a direct method to measure fission product yield distributions (FPY) and isomeric yield ratios (IYR) for spontaneous fission (SF) fragments. These physical properties are of utmost importance to the understanding of basic nuclear physics, the astrophysical rapid neutron capture process ('r process') of nucle-osynthesis, neutron star composition, and nuclear reactor safety. With this method, fission fragments are produced by spontaneous fission from a source that is mounted in a cryogenic stopping cell (CSC), thermalized and stopped within it, and then extracted and transported to a multiple-reflection time-of-flight mass-spectrometer (MR-TOF-MS). We will implement the method at the FRS Ion Catcher (FRS-IC) at GSI (Germany), whose MR-TOF-MS relative mass accuracy (similar to 10(-7)) and resolving power (similar to 600,000 FWHM) are sufficient to separate all isobars and numerous isomers in the fission fragment realm. The system's essential element independence and its fast simultaneous mass measurement provide a new direct way to measure isotopic FPY distributions, which is complementary to existing methods. It will enable nuclide FPY measurements in the high fission peak, which is hardly accessible by current techniques. The extraction time of the CSC, tens of milliseconds, enables a direct measurement of independent fission yields, and a first study of the temporal dependence of FPY distributions in this duration range. The ability to resolve isomers will further enable direct extraction of numerous IYRs while performing the FPY measurements. The method has been recently demonstrated at the FRS-ICr for SF with a 37 kBq Cf-252 fission source, where about 70 different fission fragments have been identified and counted. In the near future, it will be used for systematic studies of SF with a higher-activity Cf-252 source and a Cm-248 source. The method can be implemented also for neutron induced fission at appropriate facilities.
  •  
37.
  • Massimi, C., et al. (författare)
  • Neutron-induced cross section measurements
  • 2023
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron-induced cross sections represent the main nuclear input to models of stellar and Big-Bang nucleosynthesis. While (n,γ) reactions are relevant for the formation of elements heavier than iron, (n,p) and (n,α) reactions can play an important role in specific cases. The time-of-flight method is routinely used at n_TOF to experimentally determine the cross section data. In addition, recent upgrades of the facility will allow the use of activation techniques as well, possibly opening the way to a systematic study of neutron interaction with radioactive isotopes. In the last 20 years n_TOF has provided a large amount of experimental data for Nuclear Astrophysics. Our plan is to carry on challenging measurements and produce nuclear data in the next decades as well.
  •  
38.
  • Mastromarco, M., et al. (författare)
  • Measurement of the Gd-160(n, gamma) cross section at n_TOF and its medical implications
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Neutron-capture reactions on gadolinium isotopes play an important role in several fields of physics, in particular in nuclear Astrophysics for the understanding of the nucleosynthesis of heavy elements (beyond iron) in stars via the s- and r-processes [1] and in nuclear technology. Another important application of gadolinium is linked to the production of terbium, that offers a set of clinically interesting isotopes for theranostics, characterized by complementary physical decay characteristics. In particular, the low -energy beta(-) emitter terbium-161 is very similar to lutetium-177 in terms of half-life (6.89 d), beta(-) - energy and chemical properties. Being a significant emitter of conversion/Auger electrons, greater therapeutic effect can therefore be expected in comparison to Lu-177 [2, 3]. For this reason, in the last decade, the study of the neutron capture reaction Gd-160(n,,gamma)(161) Gd and the subsequent beta(-) - decay in terbium-161 is getting particular attention. As the nuclear data on the Gd-160 neutron capture reaction are quite scarce and inconsistent, a new measurement of the capture cross section of Gd-160 at the CERN neutron Time -Of-Flight facilty was performed in order to provide high resolution, high -accuracy data on this important reaction, in the energy range from thermal to hundreds of keV. In this contribution, the preliminary results of the n_TOF measurement are presented.
  •  
39.
  • Mattera, Andrea, 1985-, et al. (författare)
  • Production of Sn and Sb isotopes in high-energy neutron induced fission of natU
  • 2018
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 54
  • Tidskriftsartikel (refereegranskat)abstract
    • The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyvaskyla, Finland. The fission products from high-energy neutron-induced fission of U-nat were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133, were transported to a tape-implantation station and identified using gamma-spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a staggered behaviour around A = 131, not observed in the ENDF/B-VII. 1 evaluation. The yields of antimony also contradict the trend from the evaluation, but are in agreement with a calculation performed using the GEF model that shows the yield increasing with mass in the range A = 128-133.
  •  
40.
  • Mucciola, R., et al. (författare)
  • Neutron capture and total cross-section measurements on Mo-94'95'96 at n_TOF and GELINA
  • 2023
  • Ingår i: 15th International Conference on Nuclear Data for Science and Technology, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Capture and total cross section measurements for 94'95'96 MO have been performed at the neutron time -of-flight facilities, n_TOF at CERN and GELINA at JRC-Geel. The measurements were performed using isotopically enriched samples with an enrichment above 95% for each of the (94'95'96)M0 isotopes. The capture measurements were performed at n_TOF using C6D6 detectors and a new sTED detector. The transmission measurements were performed at a 10 m station of GELINA using a Li-6 glass neutron detector. Preliminary results of these measurements are presented.
  •  
41.
  • Patronis, N., et al. (författare)
  • Status report of the n_TOF facility after the 2nd CERN long shutdown period
  • 2023
  • Ingår i: EPJ TECHNIQUES AND INSTRUMENTATION. - : Springer Nature. - 2195-7045. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • During the second long shutdown period of the CERN accelerator complex (LS2, 2019-2021), several upgrade activities took place at the n_TOF facility. The most important have been the replacement of the spallation target with a next generation nitrogen-cooled lead target. Additionally, a new experimental area, at a very short distance from the target assembly (the NEAR Station) was established. In this paper, the core commissioning actions of the new installations are described. The improvement in the n_TOF infrastructure was accompanied by several detector development projects. All these upgrade actions are discussed, focusing mostly on the future perspectives of the n_TOF facility. Furthermore, some indicative current and future measurements are briefly reported.
  •  
42.
  • Pavon-Rodriguez, J. A., et al. (författare)
  • Characterisation of the n_TOF 20 m beam line at CERN with the new spallation target
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The n_TOF facility hosts CERN's pulsed neutron source, comprising two beam lines of different flight paths and one activation station. It is based on a proton beam delivered by the PS accelerator impinging on a lead spallation target. During Long Shutdown 2 (LS2) at CERN (2019-2021), a major upgrade of the spallation target was carried out in order to optimize the performances of the neutron beam. Therefore, the characteristics of n_TOF two experimental areas were investigated in detail. In this work, the focus is on the second experimental area (EAR2), located 20 m above the spallation target. Preliminary results of the neutron energy distribution and beam line energy resolution are presented, compared to previous experimental campaigns and Monte Carlo simulations with the FLUKA code. Moreover, preliminary results of the spatial beam profile measurements are shown.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  • Pomp, Stephan, 1968-, et al. (författare)
  • Measurement of fission yields and isomeric yield ratios at IGISOL
  • 2018
  • Ingår i: Scientific Workshop on Nuclear Fission Dynamics And The Emission of Prompt Neutrons and Gamma Rays (Theory-4). - : EDP Sciences. - 9782759890316
  • Konferensbidrag (refereegranskat)abstract
    • Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyvaskyla, Finland, for such measurements on Th-232 and U-nat targets. Previously published fission yield data from IGISOL concern the Th-232(p,f) and U-238(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range from U-nat(n,f) based on gamma-spectrometry. We find a staggering behaviour in the cumulative yields for Sn and a shift in the independent fission yields for Sb as compared to current evaluations. Plans for the future experimental program on fission yields and IYR measurements are discussed.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 62
Typ av publikation
konferensbidrag (33)
tidskriftsartikel (20)
annan publikation (3)
rapport (2)
licentiatavhandling (2)
proceedings (redaktörskap) (1)
visa fler...
doktorsavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (50)
övrigt vetenskapligt/konstnärligt (11)
populärvet., debatt m.m. (1)
Författare/redaktör
Pomp, Stephan, 1968- (62)
Tarrío, Diego (26)
Al-Adili, Ali (23)
Gunsing, F (19)
Lantz, Mattias, 1971 ... (18)
Cerutti, F. (17)
visa fler...
Lerner, G (17)
Mastromarco, M. (17)
Martinez, T (17)
Andrzejewski, J (17)
Calvino, F (17)
Cano-Ott, D (17)
Chiaveri, E (17)
Colonna, N (17)
Cortes, G (17)
Domingo-Pardo, C (17)
Duran, I (17)
Gonzalez-Romero, E (17)
Jericha, E (17)
Mastinu, P (17)
Mengoni, A (17)
Milazzo, P M (17)
Quesada, J M (17)
Reifarth, R (17)
Rubbia, C (17)
Tagliente, G (17)
Vaz, P (17)
Vlachoudis, V (17)
Torres-Sánchez, P. (17)
Gustavino, C (17)
Vescovi, D. (17)
Calviani, M. (17)
Musumarra, A. (17)
Woods, P. J. (17)
Alcayne, V. (17)
Mendoza, E. (17)
Casanovas, A. (17)
Lerendegui-Marco, J. (17)
Aberle, O. (17)
Amaducci, S. (17)
Babiano-Suarez, V. (17)
Bacak, M. (17)
Bernardes, A. P. (17)
Berthoumieux, E. (17)
Bosnar, D. (17)
Caamano, M. (17)
Cescutti, G. (17)
Colombetti, P. (17)
Cortes-Giraldo, M. A ... (17)
Cosentino, L. (17)
visa färre...
Lärosäte
Uppsala universitet (62)
Kungliga Tekniska Högskolan (2)
Sveriges Lantbruksuniversitet (2)
Språk
Engelska (61)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (62)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy