SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Poska A.) "

Sökning: WFRF:(Poska A.)

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Serge, M. A., et al. (författare)
  • Testing the Effect of Relative Pollen Productivity on the REVEALS Model : A Validated Reconstruction of Europe-Wide Holocene Vegetation
  • 2023
  • Ingår i: Land. - : MDPI. - 2073-445X. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1 degrees x 1 degrees) over the Holocene (last 11.7 ka BP) using the 'Regional Estimates of VEgetation Abundance from Large Sites' (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity.
  •  
2.
  • Izdebski, A., et al. (författare)
  • Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic
  • 2022
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; :6, s. 297-306
  • Tidskriftsartikel (refereegranskat)abstract
    • The Black Death (1347–1352 CE) is the most renowned pandemic in human history, believed by many to have killed half of Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.
  •  
3.
  • Strandberg, G., et al. (författare)
  • Regional climate model simulations for Europe at 6 k and 0.2 k yr BP: sensitivity to changes in anthropogenic deforestation.
  • 2013
  • Ingår i: Climate of the Past Discussions. - : Copernicus GmbH. - 1814-9340 .- 1814-9359. ; 9:5, s. 5785-5836
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 k BP and ~0.2 k BP in Europe. We apply RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land cover (deforestation) as simulated by the HYDE model (V + H), and (iii) potential vegetation with anthropogenic land cover as simulated by the KK model (V + K). The KK model estimates are closer to a set of pollen-based reconstructions of vegetation cover than the HYDE model estimates. The climate-model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, simulated deforestation is much more extensive than previously assumed, in particular according to the KK model. This leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe since evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land cover estimate has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a thorough comparison with climate model results.
  •  
4.
  • Chen, G., et al. (författare)
  • Abilities of the BRICHOS domain to prevent neurotoxicity and fibril formation are dependent on a highly conserved Asp residue
  • 2022
  • Ingår i: RSC Chemical Biology. - : Royal Society of Chemistry (RSC). - 2633-0679. ; 3:11, s. 1342-1358
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pKa value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations. 
  •  
5.
  • Gaillard, Marie-José, 1953-, et al. (författare)
  • Holocene land-cover reconstructions for studies on land cover-climate feedbacks
  • 2010
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 6, s. 483-499
  • Tidskriftsartikel (refereegranskat)abstract
    • The major objectives of this paper are: (1) to review the pros and cons of the scenarios of past anthropogenic land cover change (ALCC) developed during the last ten years, (2) to discuss issues related to pollen-based reconstruction of the past land-cover and introduce a new method, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites), to infer long-term records of past land-cover from pollen data, (3) to present a new project (LANDCLIM: LAND cover – CLIMate interactions in NW Europe during the Holocene) currently underway, and show preliminary results of REVEALS reconstructions of the regional land-cover in the Czech Republic for five selected time windows of the Holocene, and (4) to discuss the implications and future directions in climate and vegetation/land-cover modeling, and in the assessment of the effects of human-induced changes in land-cover on the regional climate through altered feedbacks. The existing ALCC scenarios show large discrepancies between them, and few cover time periods older than AD 800. When these scenarios are used to assess the impact of human land-use on climate, contrasting results are obtained. It emphasizes the need for methods such as the REVEALS model-based land-cover reconstructions. They might help to fine-tune descriptions of past land-cover and lead to a better understanding of how long-term changes in ALCC might have influenced climate. The REVEALS model is demonstrated to provide better estimates of the regional vegetation/landcover changes than the traditional use of pollen percentages. This will achieve a robust assessment of land cover at regional- to continental-spatial scale throughout the Holocene. We present maps of REVEALS estimates for the percentage cover of 10 plant functional types (PFTs) at 200 BP and 6000 BP, and of the two open-land PFTs “grassland” and “agricultural land” at five time-windows from 6000 BP to recent time. The LANDCLIM results are expected to provide crucial data to reassess ALCC estimates for a better understanding of the land suface-atmosphere interactions.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Strandberg, Gustav, et al. (författare)
  • Regional climate model simulations for Europe at 6 and 0.2 k BP : sensitivity to changes in anthropogenic deforestation
  • 2014
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 10:2, s. 661-680
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, similar to 6 and similar to 0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At similar to 6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5-1 degrees C. At similar to 0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from -1 degrees C in south-western Europe to +1 degrees C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Harrison, S.P., et al. (författare)
  • The Reading Palaeofire Database: an expanded global resource to document changes in fire regimes from sedimentary charcoal records
  • 2022
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:3, s. 1109-1124
  • Tidskriftsartikel (refereegranskat)abstract
    • Sedimentary charcoal records are widely used to reconstruct regional changes in fire regimes through time in the geological past. Existing global compilations are not geographically comprehensive and do not provide consistent metadata for all sites. Furthermore, the age models provided for these records are not harmonised and many are based on older calibrations of the radiocarbon ages. These issues limit the use of existing compilations for research into past fire regimes. Here, we present an expanded database of charcoal records, accompanied by new age models based on recalibration of radiocarbon ages using IntCal20 and Bayesian age-modelling software. We document the structure and contents of the database, the construction of the age models, and the quality control measures applied. We also record the expansion of geographical coverage relative to previous charcoal compilations and the expansion of metadata that can be used to inform analyses. This first version of the Reading Palaeofire Database contains 1676 records (entities) from 1480 sites worldwide. The database (RPDv1b - Harrison et al., 2021) is available at 10.17864/1947.000345. © 2022 Sandy P. Harrison et al.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Poska, A, et al. (författare)
  • Holocene vegetation and land-use history in the environs of Lake Kahala, northern Estonia
  • 1999
  • Ingår i: VEGETATION HISTORY AND ARCHAEOBOTANY. - : SPRINGER VERLAG. - 0939-6314. ; 8:3, s. 185-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollen profiles, based cores taken in Lake Kahala and from the adjoining mire, were used to establish general vegetation history and to reconstruct the extent and types of land-use over most of the Holocene. Modern pollen deposition was studied using moss
  •  
26.
  •  
27.
  •  
28.
  • Saarse, L, et al. (författare)
  • Spread of Alnus and Picea in Estonia
  • 1999
  • Ingår i: Proceedings of the Estonian Academy of Sciences, Geology. ; 48:3, s. 170-186
  • Tidskriftsartikel (refereegranskat)
  •  
29.
  • Tang, Jing, et al. (författare)
  • Drivers of dissolved organic carbon export in a subarctic catchment : Importance of microbial decomposition, sorption-desorption, peatland and lateral flow
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 622, s. 260-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Tundra soils account for 50% of global stocks of soil organic carbon (SOC), and it is expected that the amplified climate warming in high latitude could cause loss of this SOC through decomposition. Decomposed SOC could become hydrologically accessible, which increase downstream dissolved organic carbon (DOC) export and subsequent carbon release to the atmosphere, constituting a positive feedback to climate warming. However, DOC export is often neglected in ecosystem models. In this paper, we incorporate processes related to DOC production, mineralization, diffusion, sorption-desorption, and leaching into a customized arctic version of the dynamic ecosystem model LPJ-GUESS in order to mechanistically model catchment DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS is compared to observed DOC export at Stordalen catchment in northern Sweden. Vegetation communities include flood-tolerant graminoids (Eriophorum) and Sphagnum moss, birch forest and dwarf shrub communities. The processes, sorption-desorption and microbial decomposition (DOC production and mineralization) are found to contribute most to the variance in DOC export based on a detailed variance-based Sobol sensitivity analysis (SA) at grid cell-level. Catchment-level SA shows that the highest mean DOC exports come from the Eriophorum peatland (fen). A comparison with observations shows that the model captures the seasonality of DOC fluxes. Two catchment simulations, one without water lateral routing and one without peatland processes, were compared with the catchment simulations with all processes. The comparison showed that the current implementation of catchment lateral flow and peatland processes in LPJ-GUESS are essential to capture catchment-level DOC dynamics and indicate the model is at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The extended model provides a new tool to investigate potential interactions among climate change, vegetation dynamics, soil hydrology and DOC dynamics at both stand-alone to catchment scales.
  •  
30.
  • Trondman, Anna-Kari, et al. (författare)
  • Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:2, s. 676-697
  • Tidskriftsartikel (refereegranskat)abstract
    • We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
  •  
31.
  • Väliranta, M, et al. (författare)
  • Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe.
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca. 2 °C warmer in the early Holocene (11,700-7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy