SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Posselt Malte) "

Sökning: WFRF:(Posselt Malte)

  • Resultat 1-27 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Betterle, Andrea, et al. (författare)
  • Hyporheic exchange in recirculating flumes under heterogeneous bacterial and morphological conditions
  • 2021
  • Ingår i: Environmental Earth Sciences. - : Springer Science and Business Media LLC. - 1866-6280 .- 1866-6299. ; 80:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyporheic exchange (HE) contributes to the biogeochemical turnover of macro- and micro-pollutants in rivers. However, the spatiotemporal complexity and variability of HE hinder understanding of its role in the overall functioning of riverine ecosystems. The present study focuses on investigating the role of bacterial diversity and sediment morphology on HE using a multi-flume experiment. A fully coupled surface–subsurface numerical model was used to highlight complex exchange patterns between surface water and the underlying flow field in the sediments. Under the experimental conditions, the surface water flow induced by bedforms has a prominent effect on both local trajectories and residence time distributions of hyporheic flow paths, whereas mean hyporheic retention times are mainly modulated by average surface flowrates. In case of complex bedform morphologies, the numerical model successfully reproduces the HE estimated by means of salt dilution tests. However, the 2D numerical representation of the system falls short in predicting HE in absence of bedforms, highlighting the intrinsic complexity of water circulation patterns in real scenarios. Finally, results show that higher bacterial diversities in the stream sediments can significantly reduce hyporheic fluxes. This work provides a framework to interpret micropollutants turnover in light of the underlying physical transport processes in the hyporheic zone. The study emphasizes the importance of better understanding the tradeoff between physically driven transport processes and bacterial dynamics in the hyporheic zone to quantify the fate of pollutants in streams and rivers.
  •  
2.
  • Herzog, Skuyler P., et al. (författare)
  • Combined Surface-Subsurface Stream Restoration Structures Can Optimize Hyporheic Attenuation of Stream Water Contaminants
  • 2023
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 57:10, s. 4153-4166
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a design-to-function knowledge gap regarding how engineered stream restoration structures can maximize hyporheic contaminant attenuation. Surface and subsurface structures have each been studied in isolation as techniques to restore hyporheic exchange, but surface-subsurface structures have not been investigated or optimized in an integrated manner. Here, we used a numerical model to systematically evaluate key design variables for combined surface (i.e., weir height and length) and subsurface (i.e., upstream and downstream baffle plate spacing) structures. We also compared performance metrics that place differing emphasis on hyporheic flux versus transit times. We found that surface structures tended to create higher flux, shorter transit time flowpaths, whereas subsurface structures promoted moderate-flux, longer transit time flowpaths. Optimal combined surface-subsurface structures could increase fluxes and transit times simultaneously, thus providing conditions for contaminant attenuation that were many times more effective than surface or subsurface structures alone. All performance metrics were improved by the presence of an upstream plate and the absence of a downstream plate. Increasing the weir length tended to improve all metrics, whereas the optimal weir height varied based on metrics. These findings may improve stream restoration by better aligning specific restoration goals with appropriate performance metrics and hyporheic structure designs. 
  •  
3.
  • Höhne, Anja, et al. (författare)
  • Fate of trace organic compounds in the hyporheic zone : Influence of microbial metabolism
  • 2022
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 224
  • Tidskriftsartikel (refereegranskat)abstract
    • The hyporheic zone (HZ) is considered a hydrodynamically-driven bioreactor with significant pollutant removal capacities and can therefore not only improve wholestream water quality but also preserve human and ecosystem health. Microbial metabolism is hypothesized to play a key role in pollutant transformation in hyporheic sediments of natural streams. However, previous work investigating the influence of microbial metabolism on pollutant transformation has been predominantly laboratory studies. The key challenge for field studies is the appropriate determination of net microbial metabolism, i.e. information on the actual exposure times to specific microbial processes in the investigated system. The present study uses reactive fluorescent tracers to determine microbial metabolism and ultimately its influence on pollutant transformation, e.g. for trace organic compounds, in hyporheic sediments under natural conditions. In particular, the reactive fluorescent tracers resazurin and its main transformation product resorufin were used to determine the microbial metabolism of facultative or obligate aerobes. The influence of the derived microbial metabolism on the transformation of 20 trace organic compounds, such as pharmaceuticals, including 3 parent–daughter pairs, was examined. The present findings validate laboratory results on the microbially-mediated transformation of the anticonvulsant gabapentin to its main transformation product gabapentin lactam under natural conditions. All other TrOCs investigated did not show a clear link between TrOC reactivity to the microbial metabolism informed by the resazurin–resorufin-system. Overall, the present study not only demonstrates the use of the fluorescent tracer-system resazurin and resorufin for determining microbial metabolism of facultative or obligate aerobes but also generally highlights the potential of reactive fluorescent tracers to disentangle specific reactive properties and ultimately their influence on the fate of pollutants in natural HZs.
  •  
4.
  • Jaeger, Anna, et al. (författare)
  • Spatial and Temporal Variability in Attenuation of Polar Organic Micropollutants in an Urban Lowland Stream
  • 2019
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 53:5, s. 2383-2395
  • Tidskriftsartikel (refereegranskat)abstract
    • Contamination of rivers by trace organic compounds (TrOCs) poses a risk for aquatic ecosystems and drinking water quality. Spatially- and temporally varying environmental conditions are expected to play a major role in controlling in-stream attenuation of TrOCs. This variability is rarely captured by in situ studies of TrOC attenuation. Instead, snap-shots or time-weighted average conditions and corresponding attenuation rates are reported. The present work sought to investigate this variability and factors controlling it by analysis of 24 TrOCs over a 4.7 km reach of the River Erpe (Berlin, Germany). The factors investigated included sunlight and water temperature as well as the presence of macrophytes. Attenuation rate constants in 48 consecutive hourly water parcels were tracked along two contiguous river sections of different characteristics. Section 1 was less shaded and more densely covered with submerged macrophytes compared to section 2. The sampling campaign was repeated after macrophyte removal from section 1. The findings show, that section 1 generally provided more favorable conditions for both photo- and biodegradation. Macrophyte removal enhanced photolysis of some compounds (e.g., hydrochlorothiazide and diclofenac) while reducing the biodegradation of metoprolol. The transformation products metoprolol acid and valsartan acid were formed along the reach under all conditions.
  •  
5.
  • Jaeger, Anna, et al. (författare)
  • Time Series of Electrical Conductivity Fluctuations Give Insights Into Long-Term Solute Transport Dynamics of an Urban Stream
  • 2023
  • Ingår i: Water resources research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Artificial tracers are often used for quantitative estimates of solute transport properties in rivers. However, single-injection tracer tests give insights in transport characteristics limited to the ecohydrological conditions at the testing time. Series of time-consuming and laborious tracer tests would be required to properly capture seasonal changes. The present study uses intrinsic diurnal fluctuations of electrical conductivity (EC) caused by discharge of treated wastewater as a tracer to evaluate solute transport processes along a 4.7-km reach of the River Erpe, Germany. By reproducing the fluctuations recorded along the river using the solute transport model one-dimensional transport with inflow and storage, this study investigated the long-term dynamics in solute transport properties. Individual 48-hr curves of EC were used in the steady state configuration of the model to gain 48-hr-integrated estimates of selected transport parameters. Using a sliding window approach in 1-hr steps along the 2,270-hr time series of EC the temporal variability of solute transport between April and June 2016 was assessed. To test the identifiability of parameters using the proposed method, sensitivity analyses and a breakthrough curve analysis of selected 48-hr windows were implemented. With time advancing into the summer, a significant rising trend (Mann-Kendall test p-value < 0.05) of the cross sectional area of the channel was observed and attributed to the growth of macrophytes and a significant slightly decreasing trend for the storage rate was found. The presented method is of high value for river management, as promoting transient storage enhances biogeochemical cycling and benefits water quality.
  •  
6.
  • Jaeger, Anna, et al. (författare)
  • Transformation of organic micropollutants along hyporheic flow in bedforms of river-simulating flumes
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Urban streams receive increasing loads of organic micropollutants from treated wastewaters. A comprehensive understanding of the in-stream fate of micropollutants is thus of high interest for water quality management. Bedforms induce pumping effects considerably contributing to whole stream hyporheic exchange and are hotspots of biogeochemical turnover processes. However, little is known about the transformation of micropollutants in such structures. In the present study, we set up recirculating flumes to examine the transformation of a set of micropollutants along single flowpaths in two triangular bedforms. We sampled porewater from four locations in the bedforms over 78 days and analysed the resulting concentration curves using the results of a hydrodynamic model in combination with a reactive transport model accounting for advection, dispersion, first-order removal and retardation. The four porewater sampling locations were positioned on individual flowpaths with median solute travel times ranging from 11.5 to 43.3 h as shown in a hydrodynamic model previously. Highest stability was estimated for hydrochlorothiazide on all flowpaths. Lowest detectable half-lives were estimated for sotalol (0.7 h) and sitagliptin (0.2 h) along the shortest flowpath. Also, venlafaxine, acesulfame, bezafibrate, irbesartan, valsartan, ibuprofen and naproxen displayed lower half-lives at shorter flowpaths in the first bedform. However, the behavior of many compounds in the second bedform deviated from expectations, where particularly transformation products, e.g. valsartan acid, showed high concentrations. Flowpath-specific behavior as observed for metformin or flume-specific behavior as observed for metoprolol acid, for instance, was attributed to potential small-scale or flume-scale heterogeneity of microbial community compositions, respectively. The results of the study indicate that the shallow hyporheic flow field and the small-scale heterogeneity of the microbial community are major controlling factors for the transformation of relevant micropollutants in river sediments.
  •  
7.
  • Jaeger, Anna, et al. (författare)
  • Using recirculating flumes and a response surface model to investigate the role of hyporheic exchange and bacterial diversity on micropollutant half-lives
  • 2019
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 21:12, s. 2093-2108
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing the understanding of the fate of wastewater-derived organic micropollutants in rivers is crucial to improve risk assessment, regulatory decision making and river management. Hyporheic exchange and sediment bacterial diversity are two factors gaining increasing importance as drivers for micropollutant degradation, but are complex to study in field experiments and usually ignored in laboratory tests aimed to estimate environmental half-lives. Flume mesocosms are useful to investigate micropollutant degradation processes, bridging the gap between the field and batch experiments. However, few studies have used flumes in this context. We present a novel experimental setup using 20 recirculating flumes and a response surface model to study the influence of hyporheic exchange and sediment bacterial diversity on half-lives of the anti-epileptic drug carbamazepine (CBZ) and the artificial sweetener acesulfame (ACS). The effect of bedform-induced hyporheic exchange was tested by three treatment levels differing in number of bedforms (0, 3 and 6). Three levels of sediment bacterial diversity were obtained by diluting sediment from the River Erpe in Berlin, Germany, with sand (1 : 10, 1 : 1000 and 1 : 100 000). Our results show that ACS half-lives were significantly influenced by sediment dilution and number of bedforms. Half-lives of CBZ were higher than ACS, and were significantly affected only by the sediment dilution variable, and thus by bacterial diversity. Our results show that (1) the flume-setup is a useful tool to study the fate of micropollutants in rivers, and that (2) higher hyporheic exchange and bacterial diversity in the sediment can increase the degradation of micropollutants in rivers.
  •  
8.
  • Lewandowski, Jörg, et al. (författare)
  • Is the Hyporheic Zone Relevant beyond the Scientific Community?
  • 2019
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments along the river network. We elaborate on the main physical, biological, and biogeochemical drivers and processes within the hyporheic zone that have been studied by multiple scientific disciplines for almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic organisms. It also exerts a major control on river water quality by increasing the contact time with reactive environments, which in turn results in retention and transformation of nutrients, trace organic compounds, fine suspended particles, and microplastics, among others. The paper showcases the critical importance of hyporheic zones, both from a scientific and an applied perspective, and their role in ecosystem services to answer the question of the manuscript title. It identifies major research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in river corridors.
  •  
9.
  • McCallum, James L., et al. (författare)
  • A Numerical Stream Transport Modeling Approach Including Multiple Conceptualizations of Hyporheic Exchange and Spatial Variability to Assess Contaminant Removal
  • 2020
  • Ingår i: Water resources research. - 0043-1397 .- 1944-7973. ; 56:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the mechanisms and controls on contaminant removal in streams is essential in managing human and ecosystem health. The hyporheic zone (HZ) plays a key role in the removal of contaminants from streams. Often, tracer tests are implemented in conjunction with measurements of compounds to assess the removal rates of contaminants in streams. The predicted removal rates largely rely on the estimated hyporheic residence time, and hence, the chosen conceptual model of hyporheic exchange flows (HEFs) will influence the predicted removal rate. Despite this, different HEF models are generally not considered when assessing contaminant removal rates. In this paper, we present a numerical modeling approach for interpreting tracer tests to determine contaminant removal rates that allows for multiple conceptual models of HEF to be considered. We demonstrate this method by interpreting data from a conservative tracer test in conjunction with grab samples of trace organic compounds using two commonly used models of HEF: one that assumes first-order exchange between the stream and the HZ and one that considers a power law weighting of first-order exchange coefficients. For the three degrading compounds measured, guanylurea, valsartan, and diclofenac, we observed that the power law model consistently predicted higher removal rates in the stream compared to the first-order model. Variations were also observed between the removal rates estimated in the HZ. Our results highlight the importance of considering multiple conceptualizations of the HEF when assessing contaminant removal rates.
  •  
10.
  • Peralta-Maraver, Ignacio, et al. (författare)
  • Environmental filtering and community delineation in the streambed ecotone
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A current controversy in ecology is whether biological communities are discrete biological entities or simply study units created for convenience; a debate that becomes even more heated when delimiting communities along ecotones. Here, we report an interdisciplinary study designed to address the interplay between environmental drivers and community ecology in a typical ecotone ecosystem: the streambed. Environmental filtering at a micro-scale determined how diversity, productivity and composition of the whole streambed assemblage varied with depth and with the direction of vertical water exchange. Biomass and production decreased with increasing depth, and were lower under upwelling than downwelling conditions. However, the rate at which biomass and production decreased with increasing depth differed significantly for different taxonomic groups. Using quantitative biocenosis analysis, we also showed that benthic and hyporheic zone assemblages (assemblages in close juxtaposition) could be clearly distinguished as discrete communities with individual integrity. Vertical hydrodynamic conditions also influenced the demarcation between both communities; the benthic community reached greater depths in downwelling than in upwelling zones.
  •  
11.
  • Peralta-Maraver, Ignacio, et al. (författare)
  • Mapping Micro-Pollutants and Their Impacts on the Size Structure of Streambed Communities
  • 2019
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently there has been increasing concern over the vast array of emerging organic contaminants (EOCs) detected in streams and rivers worldwide. Understanding of the ecological implications of these compounds is limited to local scale case studies, partly as a result of technical limitations and a lack of integrative analyses. Here, we apply state-of-the-art instrumentation to analyze a complex suite of EOCs in the streambed of 30 UK streams and their effect on streambed communities. We apply the abundance-body mass (N-M) relationship approach as an integrative metric of the deviation of natural communities from reference status as a result of EOC pollution. Our analysis includes information regarding the N and M for individual prokaryotes, unicellular flagellates and ciliates, meiofauna, and macroinvertebrates. We detect a strong significant dependence of the N-M relationship coefficients with the presence of EOCs in the system, to the point of shielding the effect of other important environmental factors such as temperature, pH, and productivity. However, contrary to other stressors, EOC pollution showed a positive effect on the N-M coefficient in our work. This phenomenon can be largely explained by the increase in large-size tolerant taxa under polluted conditions. We discuss the potential implications of these results in relation to bioaccumulation and biomagnification processes. Our findings shed light on the impact of EOCs on the organization and ecology of the whole streambed community for the first time.
  •  
12.
  • Peralta-Maraver, Ignacio, et al. (författare)
  • The riverine bioreactor : An integrative perspective on biological decomposition of organic matter across riverine habitats
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 772
  • Forskningsöversikt (refereegranskat)abstract
    • Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactors performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.
  •  
13.
  •  
14.
  • Posselt, Malte, et al. (författare)
  • Bacterial Diversity Controls Transformation of Wastewater-Derived Organic Contaminants in River-Simulating Flumes
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:9, s. 5467-5479
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyporheic zones are the water-saturated flow-through subsurfaces of rivers which are characterized by the simultaneous occurrence of multiple physical, biological, and chemical processes. Two factors playing a role in the hyporheic attenuation of organic contaminants are sediment bedforms (a major driver of hyporheic exchange) and the composition of the sediment microbial community. How these factors act on the diverse range of organic contaminants encountered downstream from wastewater treatment plants is not well understood. To address this knowledge gap, we investigated dissipation half-lives (DT50s) of 31 substances (mainly pharmaceuticals) under different combinations of bacterial diversity and bedform-induced hyporheic flow using 20 recirculating flumes in a central composite face factorial design. By combining small-volume pore water sampling, targeted analysis, and suspect screening, along with quantitative real-time PCR and time-resolved amplicon Illumina MiSeq sequencing, we determined a comprehensive set of DT50s, associated bacterial communities, and microbial transformation products. The resulting DT50s of parent compounds ranged from 0.5 (fluoxetine) to 306 days (carbamazepine), with 20 substances responding significantly to bacterial diversity and four to both diversity and hyporheic flow. Bacterial taxa that were associated with biodegradation included Acidobacteria (groups 6, 17, and 22), Actinobacteria (Nocardioides and Illumatobacter), Bacteroidetes (Terrimonas and Flavobacterium) and diverse Proteobacteria (Pseudomonadaceae, Sphingomonadaceae, and Xanthomonadaceae). Notable were the formation of valsartan acid from irbesartan and valsartan, the persistence of N-desmethylvenlafaxine across all treatments, and the identification of biuret as a novel transformation product of metformin. Twelve additional target transformation products were identified, which were persistent in either pore or surface water of at least one treatment, indicating their environmental relevance.
  •  
15.
  • Posselt, Malte, et al. (författare)
  • Determination of polar organic micropollutants in surface and pore water by high-resolution sampling-direct injection-ultra high performance liquid chromatography-tandem mass spectrometry
  • 2018
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 20:12, s. 1716-1727
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyporheic zones (HZs) are dynamic and complex transition regions between rivers and aquifers which are thought to play an important role in the attenuation of environmental micropollutants. Non-steady state and small-scale hyporheic processes which affect micropollutants in the HZ are poorly characterized due to limitations in existing analytical methodologies. In this work we developed a method for high spatio-temporal resolution analysis of polar organic micropollutants (POMs) in hyporheic pore- and surface waters by combining (semi-) automatic low volume sampling techniques with direct-injection ultra-high performance liquid chromatography tandem mass spectrometry. The method is capable of quantifying 25 parent compounds and 18 transformation products (TPs) using only 0.4 mL of water and few preparation steps. Application of the method to both surface and pore water revealed significant (i.e. > an order of magnitude) differences in POM concentrations over small time and spatial scales (i.e. < a few hours and tens of cm, respectively). Guanylurea, a TP of the antidiabetic drug metformin was detected at unprecedentedly high concentrations. Collectively, this method is suitable for in situ characterization of POMs at high spatial and temporal resolution and with minimal disturbance of natural flow paths and infiltration of surface water.
  •  
16.
  •  
17.
  • Posselt, Malte, 1987- (författare)
  • Transformation of Micropollutants in the Hyporheic Zone
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Hyporheic zones (HZs) are reactive transition regions between rivers and aquifers which are thought to play an important role in the attenuation of micropollutants. Micropollutants are chemical substances such as pharmaceuticals, industrial chemicals or personal care products that are found in trace concentrations in the environment and that can be harmful to organisms. This thesis aimed to narrow the knowledge gap on the environmental fate of wastewater-derived polar organic micropollutants in the aquatic environment, with a specific emphasis on the hyporheic zone.In Paper I an efficient workflow was developed for the in-situ characterization of polar organic micropollutants and their transformation products (TPs) in the hyporheic zone at high spatial and temporal resolution and with minimal disturbance of natural flow paths. A low volume sampling device was combined with a newly developed high throughput-direct injection-UHPLC-MS/MS method. Application in the field revealed significant differences in micropollutant concentrations that varied over small time- and spatial scales. In Paper II the results of a comprehensive field study performed in the urban lowland river Erpe in Berlin, Germany, are presented. The work provided data on in-situ attenuation behavior of 24 micropollutants and TPs, along with novel insights into the spatially- and temporally varying environmental factors which play a major role in controlling in-stream attenuation of micropollutants. Paper III describes a novel, multi-flume experiment designed to investigate the influence of hyporheic exchange flow and sediment bacterial diversity on dissipation half-lives of 31 micropollutants and associated TPs. Attenuation and transformation of most substances increased significantly with bacterial diversity; fewer compounds responded to both bacterial diversity and hyporheic exchange flow. In addition to the discovery of several novel TPs, a number of bacterial strains were identified that might be associated with micropollutant degradation. In Paper IV the fate of metformin in the hyporheic zone was examined using large-scale (100m) recirculating flumes to perform realistic yet well-controlled experiments. In addition to determining dissipation half-lives in surface and pore water, the formation of novel TPs was investigated via suspect screening and bacterial communities were characterized using microbiological analyses. Data from these experiments indicate that dunes and macrophytes promote hyporheic exchange flow and create reactive environments with steep and varying biogeochemical gradients, which enhanced the degradation of metformin.Collectively, the fate of 33 parent compounds and 37 transformation products was assessed in field and mesocosm experiments described in this thesis. Additionally, 29 suspected TPs were tentatively identified. Higher bacterial diversity in the hyporheic zone and more intense hyporheic exchange flows significantly enhanced biodegradation of organic micropollutants. A number of known and novel TPs were discovered under diverse conditions, many of which showed signs of environmental persistence, providing further evidence for inclusion of TPs in contaminant risk assessments and regulatory frameworks. This work highlights the importance of considering both small- and reach-scale temporal and spatial variability for a mechanistic understanding of attenuation in in-stream studies.
  •  
18.
  • Ribbenstedt, Anton, et al. (författare)
  • In-plate toxicometabolomics of single zebrafish embryos
  • 2020
  • Ingår i: Molecular Omics. - : Royal Society of Chemistry (RSC). - 2515-4184. ; 16:3, s. 185-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicometabolomic studies involving zebrafish embryos have become increasingly popular for linking apical endpoints to biochemical perturbations as part of adverse outcome pathway determination. These experiments involve pooling embryos to generate sufficient biomass for metabolomic measurement, which adds both time and cost. To address this limitation, we developed a high-throughput toxicometabolomic assay involving single zebrafish embryos. Incubation, microscopy, embryo extraction, and instrumental metabolomic analysis were all performed in the same 96-well plate, following acquisition of conventional toxicological endpoints. The total time for the assay (including testing of 6 doses/n= 12 embryos per dose plus positive and negative controls, assessing conventional endpoints, instrumental analysis, data processing and multivariate statistics) is <14 days. Metabolomic perturbations at low dose were linked statistically to those observed at high dose and in the presence of an adverse effect, thereby contextualizing omic data amongst apical endpoints. Overall, this assay enables collection of high resolution metabolomic data in a high throughput manner, suitable for mode of action hypothesis generation in the context of pharmaceutical or toxicological screening.
  •  
19.
  • Ribbenstedt, Anton, 1986-, et al. (författare)
  • Toxicometabolomics and biotransformation in single zebrafish embryos exposed to carbamazepine
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We report here on the high throughput determination of biotransformation products(bioTPs) and toxicometabolomics in single zebrafish (ZF) embryos exposed to carbamazepine(CBZ). Exposures were carried out in 96-well plates with six CBZ concentrations ranging from 0.5 μg/L to 50 mg/L (n=12 embryos/dose). In the 50 mg/L dose group 33% of the embryos developed edema during the exposure (120hpf) while hatching was significantly delayed in three of the lower dose groups (0.46, 3.85 and the 445 μg/L) compared to the control at 48 hpf. Toxicometabolomic analysis together with random forest modelling revealed a total of 80 significantly affected metabolites (22 identified via targeted lipidomics and 58 via non-target analysis). The wide range of doses tested enabled observation of both monotonic and nonmonotonic dose-responses which fit the known mode of action of CBZ. A novel pathway was also proposed based on changes in PE-Cer (d16:2/24:1; CL 2-3) which could be the result of CBZ induced apoptosis via induction of the enzyme SAMD8. In addition, 2 CBZ bioTPs were identified without additional exposure experiments. Overall this work showcases the potential of toxicometabolomics and bioTP determination in single ZF embryos for improved and comprehensive chemical hazard assessment.
  •  
20.
  • Ribbenstedt, Anton, 1986-, et al. (författare)
  • Toxicometabolomics and Biotransformation Product Elucidation in Single Zebrafish Embryos Exposed to Carbamazepine from Environmentally-Relevant to Morphologically Altering Doses
  • 2022
  • Ingår i: Chemical Research in Toxicology. - : American Chemical Society (ACS). - 0893-228X .- 1520-5010. ; 35:3, s. 431-439
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicometabolomics and biotransformation product (bioTP) elucidation were carried out in single zebrafish (ZF) embryos exposed to carbamazepine (CBZ). Exposures were conducted in 96-well plates containing six CBZ concentrations ranging from 0.5 μg/L to 50 mg/L (n = 12 embryos per dose). In the 50 mg/L dose group, 33% of embryos developed edema during the exposure (120 hpf), while hatching was significantly delayed in three of the lower-dose groups (0.46, 3.85, and 445 μg/L) compared to the control at 48 hpf. Toxicometabolomic analysis together with random forest modeling revealed a total of 80 significantly affected metabolites (22 identified via targeted lipidomics and 58 via nontarget analysis). The wide range of doses enabled the observation of both monotonic and nonmonotonic dose responses in the metabolome, which ultimately produced a unique and comprehensive biochemical picture that aligns with existing knowledge on the mode of action of CBZ. The combination of high dose exposures and apical endpoint assessment in single embryos also enabled hypothesis generation regarding the target organ for the morphologically altering insult. In addition, two CBZ bioTPs were identified without additional exposure experiments. Overall, this work showcases the potential of toxicometabolomics and bioTP determination in single ZF embryos for rapid and comprehensive chemical hazard assessment.
  •  
21.
  • Rutere, Cyrus, et al. (författare)
  • Biodegradation of metoprolol in oxic and anoxic hyporheic zone sediments : unexpected effects on microbial communities
  • 2021
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 105:14-15, s. 6103-6115
  • Tidskriftsartikel (refereegranskat)abstract
    • Metoprolol is widely used as a beta-blocker and considered an emerging contaminant of environmental concern due to pseudo persistence in wastewater effluents that poses a potential ecotoxicological threat to aquatic ecosystems. Microbial removal of metoprolol in the redox-delineated hyporheic zone (HZ) was investigated using streambed sediments supplemented with 15 or 150 mu M metoprolol in a laboratory microcosm incubation under oxic and anoxic conditions. Metoprolol disappeared from the aqueous phase under oxic and anoxic conditions within 65 and 72 days, respectively. Metoprolol was refed twice after initial depletion resulting in accelerated disappearance under both conditions. Metoprolol disappearance was marginal in sterile control microcosms with autoclaved sediment. Metoprolol was transformed mainly to metoprolol acid in oxic microcosms, while metoprolol acid and alpha-hydroxymetoprolol were formed in anoxic microcosms. Transformation products were transient and disappeared within 30 days under both conditions. Effects of metoprolol on the HZ bacterial community were evaluated using DNA- and RNA-based time-resolved amplicon Illumina MiSeq sequencing targeting the 16S rRNA gene and 16S rRNA, respectively, and were prominent on 16S rRNA rather than 16S rRNA gene level suggesting moderate metoprolol-induced activity-level changes. A positive impact of metoprolol on Sphingomonadaceae and Enterobacteriaceae under oxic and anoxic conditions, respectively, was observed. Nitrifiers were impaired by metoprolol under oxic and anoxic conditions. Collectively, our findings revealed high metoprolol biodegradation potentials in the hyporheic zone under contrasting redox conditions associated with changes in the active microbial communities, thus contributing to the attenuation of micropollutants.
  •  
22.
  • Rutere, Cyrus, et al. (författare)
  • Fate of Trace Organic Compounds in Hyporheic Zone Sediments of Contrasting Organic Carbon Content and Impact on the Microbiome
  • 2020
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The organic carbon in streambed sediments drives multiple biogeochemical reactions, including the attenuation of organic micropollutants. An attenuation assay using sediment microcosms differing in the initial total organic carbon (TOC) revealed higher microbiome and sorption associated removal efficiencies of trace organic compounds (TrOCs) in the high-TOC compared to the low-TOC sediments. Overall, the combined microbial and sorption associated removal efficiencies of the micropollutants were generally higher than by sorption alone for all compounds tested except propranolol whose removal efficiency was similar via both mechanisms. Quantitative real-time PCR and time-resolved 16S rRNA gene amplicon sequencing revealed that higher bacterial abundance and diversity in the high-TOC sediments correlated with higher microbial removal efficiencies of most TrOCs. The bacterial community in the high-TOC sediment samples remained relatively stable against the stressor effects of TrOC amendment compared to the low-TOC sediment community that was characterized by a decline in the relative abundance of most phyla except Proteobacteria. Bacterial genera that were significantly more abundant in amended relative to unamended sediment samples and thus associated with biodegradation of the TrOCs included Xanthobacter, Hyphomicrobium, Novosphingobium, Reyranella and Terrimonas. The collective results indicated that the TOC content influences the microbial community dynamics and associated biotransformation of TrOCs as well as the sorption potential of the hyporheic zone sediments.
  •  
23.
  • Rutere, Cyrus, et al. (författare)
  • Ibuprofen Degradation and Associated Bacterial Communities in Hyporheic Zone Sediments
  • 2020
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ibuprofen, a non-steroidal anti-inflammatory pain reliever, is among pharmaceutical residues of environmental concern ubiquitously detected in wastewater effluents and receiving rivers. Thus, ibuprofen removal potentials and associated bacteria in the hyporheic zone sediments of an impacted river were investigated. Microbially mediated ibuprofen degradation was determined in oxic sediment microcosms amended with ibuprofen (5, 40, 200, and 400 µM), or ibuprofen and acetate, relative to an un-amended control. Ibuprofen was removed by the original sediment microbial community as well as in ibuprofen-enrichments obtained by re-feeding of ibuprofen. Here, 1-, 2-, 3-hydroxy- and carboxy-ibuprofen were the primary transformation products. Quantitative real-time PCR analysis revealed a significantly higher 16S rRNA abundance in ibuprofen-amended relative to un-amended incubations. Time-resolved microbial community dynamics evaluated by 16S rRNA gene and 16S rRNA analyses revealed many new ibuprofen responsive taxa of the Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria, and Proteobacteria. Two ibuprofen-degrading strains belonging to the genera Novosphingobium and Pseudomonas were isolated from the ibuprofen-enriched sediments, consuming 400 and 300 µM ibuprofen within three and eight days, respectively. The collective results indicated that the hyporheic zone sediments sustain an efficient biotic (micro-)pollutant degradation potential, and hitherto unknown microbial diversity associated with such (micro)pollutant removal.
  •  
24.
  • Schaper, Jonas L., et al. (författare)
  • Fate of Trace Organic Compounds in the Hyporheic Zone : Influence of Retardation, the Benthic Biolayer, and Organic Carbon
  • 2019
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 53:8, s. 4224-4234
  • Tidskriftsartikel (refereegranskat)abstract
    • The fate of 28 trace organic compounds (TrOCs) was investigated in the hyporheic zone (HZ) of an urban lowland river in Berlin, Germany. Water samples were collected hourly over 17 h in the river and in three depths in the HZ using minipoint samplers. The four relatively variable time series were subsequently used to calculate first order removal rates and retardation coefficients via a one-dimensional reactive transport model. Reversible sorption processes led to substantial retardation of many TrOCs along the investigated hyporheic flow path. Some TrOCs, such as dihydroxy-carbamazepine, O-desmethylvenlafaxine, and venlafaxine, were found to be stable in the HZ. Others were readily removed with half-lives in the first 10 cm of the HZ ranging from 0.1 +/- 0.01 h for iopromide to 3.3 +/- 0.3 h for tramadol. Removal rate constants of the majority of reactive TrOCs were highest in the first 10 cm of the HZ, where removal of biodegradable dissolved organic matter was also the highest. Because conditions were oxic along the top 30 cm of the investigated flow path, we attribute this finding to the high microbial activity typically associated with the shallow HZ. Frequent and short vertical hyporheic exchange flows could therefore be more important for reach-scale TrOC removal than long, lateral hyporheic flow paths.
  •  
25.
  • Schaper, Jonas L., et al. (författare)
  • Hyporheic Exchange Controls Fate of Trace Organic Compounds in an Urban Stream
  • 2018
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 52:21, s. 12285-12294
  • Tidskriftsartikel (refereegranskat)abstract
    • First-order half-lives for 26 trace organic (TrOCs) were determined in the hyporheic zone (HZ) and along a 3 km reach of a first-order stream in m South Australia during both dry and wet seasons. Two salt in-stream tracer experiments were conducted and evaluated using a transient storage model to characterize seasonal differences in stream residence time and transient storage. Lagrangian and time-integrated surface water sampling were conducted to calculated half-lives in the surface water. Half-lives in the were calculated using porewater samples obtained from a modified mini-point sampler and hyporheic residence times measured via active heat-pulse sensing. Half of the investigated TrOCs (e.g., oxazepam, olmesartan, candesartan) were not significantly removed along both the investigated river stretch and the sampled hyporheic flow paths. The remaining TrOCs (e.g., metformin, guanylurea, valsartan) were found to be significantly removed in the HZ and along the river stretch with relative removals in the HZ correlating to reach-scale relative removals. Using the modeled transport parameters, it was estimated that wet season reach-scale removal of TrOCs was predominately caused by removal in the HZ when the intensity of hyporheic exchange was also higher. Factors that increase HZ exchange are thus likely to promote in-stream reactivity of TrOCs.
  •  
26.
  • Tian, Run, 1994-, et al. (författare)
  • Increasing the Environmental Relevance of Biodegradation Testing by Focusing on Initial Biodegradation Kinetics and Employing Low-Level Spiking
  • 2023
  • Ingår i: Environmental Science and Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 10:1, s. 40-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The environmental relevance of standard biodegradation tests such as OECD 309 has been questioned. Challenges include the interpretation of changing degradation kinetics over the 60–90 incubation days and the effects of chemical spiking on the microbial community. To ameliorate these weaknesses, we evaluated a modified OECD 309 test using water and sediment from three Swedish rivers. For each river, we had three treatments (no spiking, 0.5 μg L–1 spiking, and 5 μg L–1 spiking). The dissipation of a mixture of 56–80 spiked chemicals was followed over 14 days. Changes in dissipation kinetics during the incubation were interpreted as a departure of the microbial community from its initial (natural) state. The biodegradation kinetics were first-order throughout the incubation in the no spiking and 0.5 μg L–1 spiking treatments for almost all chemicals, but for the 5 μg L–1 treatment, more chemicals showed changes in kinetics. The rate constants in the no spiking and 0.5 μg L–1 treatments agreed within a factor of 2 for 35 of 37 cases. We conclude that the environmental relevance of OECD 309 is improved by considering only the initial biodegradation phase and that it is not compromised by spiking multiple chemicals at 0.5 μg L–1. 
  •  
27.
  • Tian, Run, 1994-, et al. (författare)
  • Influence of Season on Biodegradation Rates in Rivers
  • 2024
  • Ingår i: Environmental Science and Technology. - 0013-936X .- 1520-5851.
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodegradation plays a key role in the fate of chemicals in the environment. The variability of biodegradation in time can cause uncertainty in evaluating the environmental persistence and risk of chemicals. However, the seasonality of biodegradation in rivers has not yet been the subject of environmentally relevant testing and systematic investigation for large numbers of chemicals. In this work, we studied the biodegradation of 96 compounds during four seasons at four locations (up- and downstream of WWTPs located on two Swedish rivers). Significant seasonality (ANOVA, p < 0.05) of the first-order rate constant for primary biodegradation was observed for most compounds. Variations in pH and total bacterial cell count were not the major factors explaining the seasonality of biodegradation. Deviation from the classical Arrhenius-type behavior was observed for most of the studied compounds, which calls into question the application of this relationship to correct biodegradation rate constants for differences in environmental temperature. Similarities in magnitude and seasonality of biodegradation rate constants were observed for some groups of chemicals possessing the same functional groups. Moreover, reduced seasonality of biodegradation was observed downstream of WWTPs, while biodegradation rates of most compounds were not significantly different between up- and downstream.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-27 av 27
Typ av publikation
tidskriftsartikel (22)
annan publikation (3)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Posselt, Malte (20)
Jaeger, Anna (12)
Benskin, Jonathan P. (8)
Lewandowski, Jörg (8)
Schaper, Jonas L. (8)
Krause, Stefan (7)
visa fler...
Coll, Claudia (7)
Posselt, Malte, 1987 ... (7)
Betterle, Andrea (6)
Mechelke, Jonas (6)
Hollender, Juliane (5)
Lewandowski, Joerg (5)
Galloway, Jason (4)
Sobek, Anna (3)
Batelaan, Okke (3)
Portmann, Andrea (3)
Höhne, Anja (3)
McCallum, James L. (3)
Fenner, Kathrin (2)
Radke, Michael (2)
Schirmer, Mario (2)
Riml, Joakim, 1979- (2)
Ribbenstedt, Anton, ... (2)
Herzog, Skuyler P. (2)
Banks, Eddie W. (2)
Kusebauch, Björn (2)
Ward, Adam S. (2)
Schulz, Hanna (2)
Romeijn, Paul (1)
Gergs, Rene (1)
McLachlan, Michael S ... (1)
Wörman, Anders (1)
Brunius, Carl, 1974 (1)
Ribbenstedt, Anton (1)
Benskin, Jonathan (1)
Singer, Gabriel (1)
Reiss, Julia (1)
Kratina, Pavel (1)
Breitholtz, Magnus, ... (1)
McLachlan, Michael S ... (1)
White, James (1)
Sarmento, Hugo (1)
Wu, Liwen (1)
Sahm, Rene (1)
Moretti, Marcelo S (1)
Cousins, Ian, Profes ... (1)
Nobrega, Rodolfo L.B ... (1)
Müller, Birgit M. (1)
Dara, Rebwar (1)
Schaper, Jonas (1)
visa färre...
Lärosäte
Stockholms universitet (27)
Kungliga Tekniska Högskolan (2)
Chalmers tekniska högskola (1)
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (26)
Teknik (9)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy