SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Posthuma Leo) "

Sökning: WFRF:(Posthuma Leo)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brack, Werner, et al. (författare)
  • The SOLUTIONS project : Challenges and responses for present and future emerging pollutants in land and water resources management
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 503, s. 22-31
  • Tidskriftsartikel (refereegranskat)abstract
    • SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported. with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.
  •  
2.
  • Brack, Werner, et al. (författare)
  • Towards the review of the European Union Water Framework Directive : Recommendations for more efficient assessment and management of chemical contamination in European surface water resources
  • 2017
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 576, s. 720-737
  • Forskningsöversikt (refereegranskat)abstract
    • Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic chemical status assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring, to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment.
  •  
3.
  • Clift, Roland, et al. (författare)
  • The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains
  • 2017
  • Ingår i: Sustainability. - : MDPI AG. - 2071-1050. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Planetary Boundaries (PB) framework represents a significant advance in specifying the ecological constraints on human development. However, to enable decision-makers in business and public policy to respect these constraints in strategic planning, the PB framework needs to be developed to generate practical tools. With this objective in mind, we analyse the recent literature and highlight three major scientific and technical challenges in operationalizing the PB approach in decision-making: first, identification of thresholds or boundaries with associated metrics for different geographical scales; second, the need to frame approaches to allocate fair shares in the 'safe operating space' bounded by the PBs across the value chain and; third, the need for international bodies to co-ordinate the implementation of the measures needed to respect the Planetary Boundaries. For the first two of these challenges, we consider how they might be addressed for four PBs: climate change, freshwater use, biosphere integrity and chemical pollution and other novel entities. Four key opportunities are identified: (1) development of a common system of metrics that can be applied consistently at and across different scales; (2) setting 'distance from boundary' measures that can be applied at different scales; (3) development of global, preferably open-source, databases and models; and (4) advancing understanding of the interactions between the different PBs. Addressing the scientific and technical challenges in operationalizing the planetary boundaries needs be complemented with progress in addressing the equity and ethical issues in allocating the safe operating space between companies and sectors.
  •  
4.
  • de Zwart, Dick, et al. (författare)
  • Toward Harmonizing Ecotoxicity Characterization in Life Cycle Impact Assessment
  • 2018
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 37:12, s. 2955-2971
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem quality is an important area of protection in life cycle impact assessment (LCIA). Chemical pollution has adverse impacts on ecosystems on a global scale. To improve methods for assessing ecosystem impacts, the Life Cycle Initiative hosted by the United Nations Environment Programme established a task force to evaluate the state-of-the-science in modeling chemical exposure of organisms and the resulting ecotoxicological effects for use in LCIA. The outcome of the task force work will be global guidance and harmonization by recommending changes to the existing practice of exposure and effect modeling in ecotoxicity characterization. These changes will reflect the current science and ensure the stability of recommended practice. Recommendations must work within the needs of LCIA in terms of 1) operating on information from any inventory reporting chemical emissions with limited spatiotemporal information, 2) applying best estimates rather than conservative assumptions to ensure unbiased comparison with results for other impact categories, and 3) yielding results that are additive across substances and life cycle stages and that will allow a quantitative expression of damage to the exposed ecosystem. We describe the current framework and discuss research questions identified in a roadmap. Primary research questions relate to the approach toward ecotoxicological effect assessment, the need to clarify the method's scope and interpretation of its results, the need to consider additional environmental compartments and impact pathways, and the relevance of effect metrics other than the currently applied geometric mean of toxicity effect data across species. Because they often dominate ecotoxicity results in LCIA, we give metals a special focus, including consideration of their possible essentiality and changes in environmental bioavailability. We conclude with a summary of key questions along with preliminary recommendations to address them as well as open questions that require additional research efforts.
  •  
5.
  • Dulio, Valeria, et al. (författare)
  • The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC) : let’s cooperate!
  • 2020
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 32:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken.
  •  
6.
  • Gustavsson, Mikael, et al. (författare)
  • Using species sensitivity distributions to determine boundaries for chemical pollution
  • 2015
  • Ingår i: Oral presentation at the SETAC conference, Barcelona, Spain.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Species sensitivity distributions (SSDs) and distributions of toxicity values are used for determining toxicological and ecotoxicological thresholds, the HC5 (hazardous concentration for 5% of the species) and the TTC (threshold of toxicological concern), respectively. An SSD describes the sensitivity distribution of a range of species towards a single toxicant, while the TTC is based on the toxicity distribution of a range of different compounds towards the same species or group of species. Both concepts can be combined by using the distribution of HC5 values for a group of substances in order to estimate the TTC. HC5- as well as TTC-values are usually based on toxicity data from standard single species assays. However, the ecological impact of a compound is the result of the reaction of a range of interacting species. In order to explore the impact of using data from ecological communities instead of single species, we performed a comparison of the TTC based on HC5-values with the TTC based on community ecotoxicological data (threshold of concern for community toxicity, TCCT). This study was performed by using toxicity data for Photosystem II- inhibiting herbicides to single algal species and algal communities. Single-species based SSDs and the corresponding HC5 values were established for seven different herbicides. Community ecotoxicity data were collected for 17 herbicides. The resulting thresholds were 6.8 nmol/L for the TTC based on HC5 values and 3.5 nmol/L for the TTC based on community data. This indicates that indirect ecological effects and species interactions do not seem to play a major role, as long as photosynthesis is in focus.
  •  
7.
  • Marouli, Eirini, et al. (författare)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
8.
  • Rydberg, Tomas, 1962, et al. (författare)
  • Towards a common conceptual framework for chemical footprint bridging Risk Assessment and Life Cycle Assessment: Short review and way forward
  • 2014
  • Ingår i: SETAC 24th Annual Meeting, Basel, Switserland.
  • Konferensbidrag (refereegranskat)abstract
    • Several studies have been presented recently, applying the chemical footprint (ChF) concept trying to address a variety of questions, often, but not always, to aggregate pollution of many chemicals to one or a few indicators. Furthermore, the possiblity to link chemical pollution to the concept of planetary boundaries, e.g. through the ChF concept, has also been discussed in recent publications. While the planetary boundary concept is pointed out as very difficult for chemical pollution, because of its local or regional nature, there is a need for an integrated chemical assessment and management approach on the regional and global level.This paper provides a short review and conceptual analysis regarding ChF, and suggests a way forward towards a common science based Conceptual Framework for Chemical Footprinting methods, bridging Risk Assessment (RA) and Life Cycle Assessment (LCA) science and methods.Although varying, the approaches reviewed typically are rooted in the knowledge basis of both RA and LCA. Questions for further elaboration are, e.g.: (a) Is a ChF assigned to an object in the technosphere: point source, value chain, sector, or the whole economy, and if so, on what scale (Sub-national to Global), (b) Is a ChF assigned to an object in the biosphere: specific location, or a specific organism (man?), (c) Is the number of chemicals involved one, several, all?, (e) Are chemicals treated as individuals, or grouped, or aggregated by means of toxicity related summation (TCDD-TEQ, UseTox, else). (f) What position to indicate in the cause-effect chain: from occurrence in the technosphere, to the “n-th” order effect in the environment? (f) Are also metabolites included?, and (g) What are relevant impacts, i.e. human health, or ecosystem integrity (only), or also e.g. photo chemical oxidant formation, among others?Given the apparent versatility of the concept and its potential use in chemicals management, a substantial motive to collate the initiatives exists. A SETAC-Working group would be a functional way forward with the goal to e.g.: 1) frame the existing methodologies according to applications and 2) evaluate and fill gaps and weaknesses of proposed methodologies. Input from both the RA and LCA communities are necessary to reach sound and versatile methods which are useful for chemical risk reduction and management, and to underpin development towards the definition of a planetary boundary, or boundaries, for chemical pollution.
  •  
9.
  • van Gils, Jos, et al. (författare)
  • Computational material flow analysis for thousands of chemicals of emerging concern in European waters
  • 2020
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 397
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of exposure to a wide range of chemicals, and the spatio-temporal variability thereof, is urgently needed in the context of protecting and restoring aquatic ecosystems. This paper discusses a computational material flow analysis to predict the occurrence of thousands of man-made organic chemicals on a European scale, based on a novel temporally and spatially resolved modelling framework. The goal was to increase understanding of pressures by emerging chemicals and to complement surface water monitoring data. The ambition was to provide a first step towards a real-life mixture exposure situation accounting for as many chemicals as possible. Comparison of simulated concentrations and chemical monitoring data for 226 substance/basin combinations showed that the simulated concentrations were accurate on average. For 65% and 90% of substance/basin combinations the error was within one and two orders of magnitude respectively. An analysis of the relative importance of uncertainties revealed that inaccuracies in use volume or use type information contributed most to the error for individual substances. To resolve this, we suggest better registration of use types of industrial chemicals, investigation of presence/absence of industrial chemicals in wastewater and runoff samples and more scientific information exchange.
  •  
10.
  • van Gils, Jos, et al. (författare)
  • The European Collaborative Project SOLUTIONS developed models to provide diagnostic and prognostic capacity and fill data gaps for chemicals of emerging concern
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4707 .- 2190-4715. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Union Water Framework Directives aims at achieving good ecological status in member states' water bodies. Insufficient ecological status could be the result of different interacting stressors, among them the presence of many thousands of chemicals. The diagnosis of the likelihood that these chemicals negatively affect the ecological status of surface waters or human health, and the subsequent development of abatement measures usually relies on water quality monitoring. This gives an incomplete picture of chemicals' contamination, due to the limited number of monitoring stations, samples and substances. Information gaps thus limit the possibilities to protect against and effectively manage chemicals in aquatic ecosystems. The EU FP7 SOLUTIONS project has developed and validated a collection of integrated models (Model Train) to increase our understanding of issues related to emerging chemicals in Europe's river basins and to complement information and knowledge derived from field data. Unlike pre-existing models, the Model Train is suitable to model mixtures of thousands of chemicals, to better approach a real-life mixture exposure situation. It can also be used to model new chemicals at a stage where not much is known about them. The application of these models on a European scale provides temporally and spatially variable concentration data to fill gaps in the space, time and substance domains left open by water quality monitoring, and it provides homogeneous data across Europe where water quality data from monitoring are missing. Thus, it helps to avoid overlooking candidate chemicals and possible hot spots for management intervention. The application of the SOLUTIONS Model Train on a European scale presents a relevant line of evidence for water system level prognostic and diagnostic impact assessment related to chemical pollution. The application supports the design of cost-effective programmes of measures by helping to identify the most affected sites and the responsible substances, by evaluating alternative abatement options and by exploring the consequences of future trends.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (7)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Munthe, John (5)
van Bavel, Bert (1)
Boeing, Heiner (1)
Rolandsson, Olov (1)
Zhou, Wei (1)
Vijver, Martina G. (1)
visa fler...
Peijnenburg, Willie ... (1)
Molander, Sverker, 1 ... (1)
Salomaa, Veikko (1)
Mannisto, Satu (1)
Perola, Markus (1)
Li, Jin (1)
van den Brink, Paul (1)
De Borst, Gert J (1)
Allison, Matthew (1)
Lind, Lars (1)
Martin, Jonathan W. (1)
Raitakari, Olli T (1)
Björn, Anders (1)
Nordestgaard, Borge ... (1)
Sattar, Naveed (1)
Rudan, Igor (1)
Breen, Gerome (1)
McLachlan, Michael S ... (1)
Deloukas, Panos (1)
Langefeld, Carl D. (1)
Sala, Serenella (1)
Mila i Canals, Llore ... (1)
Holmquist, Hanna, 19 ... (1)
Woods, Michael O. (1)
Schulze, Matthias B. (1)
North, Kari E. (1)
Franks, Paul W. (1)
Meidtner, Karina (1)
Wareham, Nicholas J. (1)
Rydberg, Tomas, 1962 (1)
Dunning, Alison M. (1)
Auer, Paul L. (1)
Keeman, Renske (1)
Easton, Douglas F. (1)
Schmidt, Marjanka K. (1)
Kuusisto, Johanna (1)
Laakso, Markku (1)
McCarthy, Mark I (1)
Ferrannini, Ele (1)
Bork-Jensen, Jette (1)
Thuesen, Betina H. (1)
Brandslund, Ivan (1)
Linneberg, Allan (1)
Grarup, Niels (1)
visa färre...
Lärosäte
Stockholms universitet (6)
Göteborgs universitet (3)
IVL Svenska Miljöinstitutet (3)
Chalmers tekniska högskola (2)
Umeå universitet (1)
Uppsala universitet (1)
visa fler...
Luleå tekniska universitet (1)
Örebro universitet (1)
Lunds universitet (1)
RISE (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Teknik (2)
Samhällsvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy