SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Posti J. P.) "

Sökning: WFRF:(Posti J. P.)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Posti, J. P., et al. (författare)
  • Admission Levels of Interleukin 10 and Amyloid beta 1-40 Improve the Outcome Prediction Performance of the Helsinki Computed Tomography Score in Traumatic Brain Injury
  • 2020
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Blood biomarkers may enhance outcome prediction performance of head computed tomography scores in traumatic brain injury (TBI). Objective: To investigate whether admission levels of eight different protein biomarkers can improve the outcome prediction performance of the Helsinki computed tomography score (HCTS) without clinical covariates in TBI. Materials and methods: Eighty-two patients with computed tomography positive TBIs were included in this study. Plasma levels of beta-amyloid isoforms 1-40 (A beta 40) and 1-42 (A beta 42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10 (IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured within 24 h from admission. The patients were divided into favorable (Glasgow Outcome Scale-Extended 5-8, n = 49) and unfavorable (Glasgow Outcome Scale-Extended 1-4, n = 33) groups. The outcome was assessed 6-12 months after injury. An optimal predictive panel was investigated with the sensitivity set at 90-100%. Results: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9-100) and specificity of 22.4% (95% CI: 10.2-32.7) and partial area under the curve of the receiver operating characteristic of 2.5% (95% CI: 1.1-4.7), in discriminating patients with favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable outcome was an HCTS > 1. The three best individually performing biomarkers in outcome prediction were A beta 40, A beta 42, and neurofilament light. The optimal panel included IL-10, A beta 40, and the HCTS reaching a partial area under the curve of the receiver operating characteristic of 3.4% (95% CI: 1.7-6.2) with a sensitivity of 90.9% (95% CI: 81.8-100) and specificity of 59.2% (95% CI: 40.8-69.4). Conclusion: Admission plasma levels of IL-10 and A beta 40 significantly improve the prognostication ability of the HCTS after TBI.
  •  
5.
  • Hossain, I., et al. (författare)
  • Admission Levels of Total Tau and β-Amyloid Isoforms 1–40 and 1–42 in Predicting the Outcome of Mild Traumatic Brain Injury
  • 2020
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI). Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6–12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive values of the biomarkers were analyzed independently, in panels and together with clinical parameters. Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores. Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI. © Copyright © 2020 Hossain, Mohammadian, Takala, Tenovuo, Azurmendi Gil, Frantzén, van Gils, Hutchinson, Katila, Maanpää, Menon, Newcombe, Tallus, Hrusovsky, Wilson, Gill, Blennow, Sanchez, Zetterberg and Posti.
  •  
6.
  • Koivikko, P., et al. (författare)
  • Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury
  • 2022
  • Ingår i: Emergency Medicine Journal. - : BMJ. - 1472-0205 .- 1472-0213. ; 39, s. 206-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Background There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. Methods Adult patients (>= 18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011-2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13-15 was classified as mild (mTBI); GCS 9-12 as moderate (moTBI) and GCS 3-8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. Results Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. Conclusions S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting.
  •  
7.
  • Posti, J. P., et al. (författare)
  • Correlation of Blood Biomarkers and Biomarker Panels with Traumatic Findings on Computed Tomography after Traumatic Brain Injury
  • 2019
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 36:14, s. 2178-89
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the study was to examine the ability of eight protein biomarkers and their combinations in discriminating computed tomography (CT)-negative and CT-positive patients with traumatic brain injury (TBI), utilizing highly sensitive immunoassays in a well-characterized cohort. Blood samples were obtained from 160 patients with acute TBI within 24 h of admission. Levels of beta-amyloid isoforms 1-40 (A beta 40) and 1-42 (A beta 42), glial fibrillary acidic protein (GFAP), heart fatty-acid binding protein (H-FABP), interleukin 10 (IL-10), neurofilament light (NF-L), S100 calcium-binding protein B (S100B), and tau were measured. Patients were divided into CT-negative (n = 65) and CT-positive (n = 95), and analyses were conducted separately for TBIs of all severities (Glasgow Coma Scale [GCS] score 3-15) and mild TBIs (mTBIs; GCS 13-15). NF-L, GFAP, and tau were the best in discriminating CT-negative and CT-positive patients, both in patients with mTBI and with all severities. In patients with all severities, area under the curve of the receiver operating characteristic (AUC) was 0.822, 0.817, and 0.781 for GFAP, NF-L, and tau, respectively. In patients with mTBI, AUC was 0.720, 0.689, and 0.676, for GFAP, tau, and NF-L, respectively. The best panel of three biomarkers for discriminating CT-negative and CT-positive patients in the group of all severities was a combination of GFAP+H-FABP+IL-10, with a sensitivity of 100% and specificity of 38.5%. In patients with mTBI, the best panel of three biomarkers was H-FABP+S100B+tau, with a sensitivity of 100% and specificity of 46.4%. Panels of biomarkers outperform individual biomarkers in separating CT-negative and CT-positive patients. Panels consisted mainly of different biomarkers than those that performed best as an individual biomarker.
  •  
8.
  • Lagerstedt, L., et al. (författare)
  • Interleukin 10 and Heart Fatty Acid-Binding Protein as Early Outcome Predictors in Patients With Traumatic Brain Injury
  • 2020
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Patients with traumatic brain injury (TBI) exhibit a variable and unpredictable outcome. The proteins interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have shown predictive values for the presence of intracranial lesions. Aim:To evaluate the individual and combined outcome prediction ability of IL-10 and H-FABP, and to compare them to the more studied proteins S100 beta, glial fibrillary acidic protein (GFAP), and neurofilament light (NF-L), both with and without clinical predictors. Methods:Blood samples from patients with acute TBI (all severities) were collected 6 months post injury using the Glasgow Outcome Scale Extended (GOSE) score, dichotomizing patients into: (i) those with favorable (GOSE >= 5)/unfavorable outcome (GOSE <= 4) and complete (GOSE = 8)/incomplete (GOSE <= 7) recovery, and (ii) patients with mild TBI (mTBI) and patients with TBIs of all severities. Results:When sensitivity was set at 95-100%, the proteins' individual specificities remained low. H-FABP showed the best specificity (%) and sensitivity (100%) in predicting complete recovery in patients with mTBI. IL-10 had the best specificity (50%) and sensitivity (96%) in identifying patients with favorable outcome in patients with TBIs of all severities. When individual proteins were combined with clinical parameters, a model including H-FABP, NF-L, and ISS yielded a specificity of 56% and a sensitivity of 96% in predicting complete recovery in patients with mTBI. In predicting favorable outcome, a model consisting IL-10, age, and TBI severity reached a specificity of 80% and a sensitivity of 96% in patients with TBIs of all severities. Conclusion:Combining novel TBI biomarkers H-FABP and IL-10 with GFAP, NF-L and S100 beta and clinical parameters improves outcome prediction models in TBI.
  •  
9.
  • Hossain, I., et al. (författare)
  • Plasma neurofilament light admission levels and development of axonal pathology in mild traumatic brain injury
  • 2023
  • Ingår i: BMC Neurology. - 1471-2377. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIt is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI.MethodsNinety-three patients with mTBI (GCS & GE; 13), blood sample for NF-L within 24 h of admission, and DW-MRI & GE; 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups.ResultsThe levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001-p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found.ConclusionIn patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI.
  •  
10.
  • Iverson, G. L., et al. (författare)
  • Serum Neurofilament Light Is Elevated Differentially in Older Adults with Uncomplicated Mild Traumatic Brain Injuries
  • 2019
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 36:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light (NF-L) might have diagnostic and prognostic potential as a blood biomarker for mild traumatic brain injury (mTBI). However, elevated NF-L is associated with several neurological disorders associated with older age, which could confound its usefulness as a traumatic brain injury biomarker. We examined whether NF-L is elevated differentially following uncomplicated mTBI in older adults with pre-injury neurological disorders. In a case-control study, a sample of 118 adults (mean age = 62.3 years, standard deviation [SD] = 22.5, range = 18-100; 52.5% women) presenting to the emergency department (ED) with an uncomplicated mTBI were enrolled. All participants underwent head computed tomography in the ED and showed no macroscopic evidence of injury. The mean time between injury and blood sampling was 8.3 h (median [Md] = 3.5; SD = 13.5; interquartile range [IQR] = 1.9-6.0, range = 0.8-67.4, and 90% collected within 19 h). A sample of 40 orthopedically-injured trauma control subjects recruited from a second ED also were examined. Serum NF-L levels were measured and analyzed using Human Neurology 4-Plex A assay on a HD-1 Single Molecule Array (Simoa) instrument. A high correlation was found between age and NF-L levels in the total mTBI sample (r = 0.80), within the subgroups without pre-injury neurological diseases (r = 0.76) and with pre-injury neurological diseases (r = 0.68), and in the trauma control subjects (r = 0.76). Those with mTBIs and pre-injury neurological conditions had higher NF-L levels than those with no pre-injury neurological conditions (p < 0.001, Cohen's d = 1.01). Older age and pre-injury neurological diseases are associated with elevated serum NF-L levels in patients with head trauma and in orthopedically-injured control subjects.
  •  
11.
  • Newcombe, Virginia F J, et al. (författare)
  • Post-acute blood biomarkers and disease progression in traumatic brain injury.
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:6, s. 2064-2076
  • Tidskriftsartikel (refereegranskat)abstract
    • There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein and neurofilament light have been widely explored in characterising acute traumatic brain injury, their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following traumatic brain injury. Two-hundred and three patients were recruited in two separate cohorts; six months post-injury (n=165); and >5 years post-injury (n=38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n=199) and magnetic resonance imaging (n=172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualised Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at six months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualised brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. Glial fibrillary acid protein and neurofilament light levels can remain elevated months to years after traumatic brain injury, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify traumatic brain injury survivors who are at high risk of progressive neurological damage.
  •  
12.
  • Oresic, Matej, 1967-, et al. (författare)
  • Human Serum Metabolites Associate With Severity and Patient Outcomes in Traumatic Brain Injury
  • 2016
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 12, s. 118-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) is a major cause of death and disability worldwide, especially in children and young adults. TBI is an example of a medical condition where there are still major lacks in diagnostics and outcome prediction. Here we apply comprehensive metabolic profiling of serum samples from TBI patients and controls in two independent cohorts. The discovery study included 144 TBI patients, with the samples taken at the time of hospitalization. The patients were diagnosed as severe (sTBI; n=22), moderate (moTBI; n=14) or mild TBI (mTBI; n=108) according to Glasgow Coma Scale. The control group (n=28) comprised of acute orthopedic non-brain injuries. The validation study included sTBI (n=23), moTBI (n=7), mTBI (n=37) patients and controls (n=27). We show that two medium-chain fatty acids (decanoic and octanoic acids) and sugar derivatives including 2,3-bisphosphoglyceric acid are strongly associated with severity of TBI, and most of them are also detected at high concentrations in brain microdialysates of TBI patients. Based on metabolite concentrations from TBI patients at the time of hospitalization, an algorithm was developed that accurately predicted the patient outcomes (AUC=0.84 in validation cohort). Addition of the metabolites to the established clinical model (CRASH), comprising clinical and computed tomography data, significantly improved prediction of patient outcomes. The identified 'TBI metabotype' in serum, that may be indicative of disrupted blood-brain barrier, of protective physiological response and altered metabolism due to head trauma, offers a new venue for the development of diagnostic and prognostic markers of broad spectrum of TBIs. (C) 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
13.
  • Iverson, G. L., et al. (författare)
  • Reliability of serum S100B measurement following mild traumatic brain injury: a comparison of assay measurements from two laboratories
  • 2020
  • Ingår i: Brain Injury. - : Informa UK Limited. - 0269-9052 .- 1362-301X. ; 34:9, s. 1237-1244
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective There is enormous research and clinical interest in blood-based biomarkers of mild traumatic brain injury (MTBI) sustained in sports, daily life, or military service. We examined the reliability of a commercially available assay for S100B used on the same samples by two different laboratories separated by 2 years in time. Methods and Procedures A cohort of 163 adult patients (head CT-scanned, n = 110) with mild head injury were enrolled from the emergency department (ED). All had Glasgow Coma Scale scores of 14 or 15 in the ED (94.4% = 15). The mean time between injury and venous blood sampling was 2.9 h (SD = 1.4; Range = 0.5-6.0 h). Serum S100B was measured at two independent centers using the same high throughput clinical assay (Elecsys S100B (R); Roche Diagnostics). Results The Spearman correlation between the two assays in the total sample (N = 163) was r = 0.93. A Wilcoxson Signed Ranks test indicated that the median scores for the values differed (Z = 2,082,p< .001, Cohen's d = 0.151, small effect size). The values obtained from the two laboratories were very similar for identifying traumatic intracranial abnormalities (sensitivity = 80.1% versus 85.7%). Conclusions The serum S100B results measured using the same assay in different laboratories yielded highly correlated and clinically similar, but clearly not identical, results.
  •  
14.
  • Posti, Jussi P., et al. (författare)
  • SERUM METABOLITES ASSOCIATE WITH HEAD COMPUTED TOMOGRAPHY FINDINGS FOLLOWING TRAUMATIC BRAIN INJURY
  • 2018
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 35:16, s. A67-A67
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • There is a need to rapidly detect patients with traumatic brain injury (TBI) who require head computed tomography (CT). Given the energy crisis in the brain following TBI, we hypothesized that serum metabolomics would be a useful tool for developing a set of bio-markers to determine the need for CT and to distinguish between different types of injuries observed. Logistic regression models using metabolite data from the discovery cohort (n=144, Turku, Finland) were used to distinguish between patients with traumatic intracranial findings and negative findings on head CT. The resultant models were then tested in the validation cohort (n=66, Cambridge, UK). The levels of glial fibrillary acidic protein and ubiquitin C-terminalhydrolase-L1 were also quantified in the serum from the same patients. Despite there being significant differences in the protein bio-markers in patients with TBI, the model that determined the need for a CT scan validated poorly (AUC=0.64: Cambridge patients). However, using a combination of six metabolites (two amino acids, thre esugar derivatives and one ketoacid) it was possible to discriminate patients with intracranial abnormalities on CT and patients with a normal CT (AUC=0.77 in Turku patients and AUC=0.73 in Cambridge patients). Furthermore, a combination of three metabolites could distinguish between diffuse brain injuries and mass lesions (AUC=0.87 in Turku patients and AUC=0.68 in Cambridge pa-tients). This study identifies a set of validated serum polar metabolites, which associate with the need for a CT scan. Additionally, serum metabolites can also predict the nature of the brain injury. These metabolite markers may prevent unnecessary CT scans, thus reducing the cost of diagnostics and radiation load.
  •  
15.
  • Dickens, Alex Mountfort, et al. (författare)
  • Serum Metabolites Associated with Computed TomographyFindings after Traumatic Brain Injury
  • 2018
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 35:22, s. 2673-2683
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need to rapidly detect patients with traumatic brain injury (TBI) who require head computed tomography (CT). Given the energy crisis in the brain following TBI, we hypothesized that serum metabolomics would be a useful tool for developing a set of biomarkers to determine the need for CT and to distinguish between different types of injuries observed. Logistic regression models using metabolite data from the discovery cohort (n=144, Turku, Finland) were used to distinguish between patients with traumatic intracranial findings and negative findings on head CT. The resultant models were then tested in the validation cohort (n=66, Cambridge, UK). The levels of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 were also quantified in the serum from the same patients. Despite there being significant differences in the protein biomarkers in patients with TBI, the model that determined the need for a CT scan validated poorly (AUC=0.64: Cambridge patients). However, using a combination of six metabolites (two amino acids, three sugar derivatives and one ketoacid) it was possible to discriminate patients with intracranial abnormalities on CT and patients with a normal CT (AUC=0.77 in Turku patients and AUC=0.73 in Cambridge patients). Furthermore, a combination of three metabolites could distinguish between diffuse brain injuries and mass lesions (AUC=0.87 in Turku patients and AUC=0.68 in Cambridge patients). This study identifies a set of validated serum polar metabolites, which associate with the need for a CT scan. Additionally, serum metabolites can also predict the nature of the brain injury. These metabolite markers may prevent unnecessary CT scans, thus reducing the cost of diagnostics and radiation load.
  •  
16.
  • Hossain, Iftakher, et al. (författare)
  • Early Levels of Glial Fibrillary Acidic Protein and Neurofilament Light Protein in Predicting the Outcome of Mild Traumatic Brain Injury
  • 2019
  • Ingår i: Journal of neurotrauma. - : Mary Ann Liebert Inc. - 1557-9042 .- 0897-7151. ; 36:10, s. 1551-1560
  • Tidskriftsartikel (refereegranskat)abstract
    • To correlate the early levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NF-L) with outcome in patients with mild traumatic brain injury (mTBI). 107 patients with mTBI [Glasgow Coma Scale (GCS) ≥13] having the blood samples for GFAP and NF-L available within 24 hrs from arrival were included. Patients with mTBI were divided into computed tomography (CT)-positive and CT-negative groups. Glasgow Outcome Scale extended (GOSE) was used to assess the outcome. Outcomes were defined as complete (GOSE 8) vs. incomplete (GOSE <8), and favorable (GOSE 5-8) vs. unfavorable (GOSE 1-4). GFAP and NF-L concentrations in blood were measured using ultrasensitive single molecule array technology. Patients with incomplete recovery had significantly higher levels of NF-L compared to those with complete recovery (p=0.005). The levels of GFAP and NF-L were significantly higher in patients with unfavorable outcome than in patients with favorable outcome (p=0.002 for GFAP and p <0.001 for NF-L). For predicting favorable outcome, the area under the ROC curve for GFAP and NF-L was 0.755 and 0.826, respectively. In a multivariate logistic regression model, the level of NF-L was still a significant predictor for complete recovery (OR=1.008, 95%CI, 1.000-1.016). Moreover, the level of NF-L was a significant predictor for complete recovery in CT-positive patients (OR=1.009, 95%CI, 1.001-1.016). The early levels of GFAP and NF-L are significantly correlated with the outcome in patients with mTBI. The level of NF-L within 24 hrs from arrival has a significant predictive value in mTBI also in a multivariate model.
  •  
17.
  • Huebschmann, Nathan A, et al. (författare)
  • Comparing Glial Fibrillary Acidic Protein (GFAP) in Serum and Plasma Following Mild Traumatic Brain Injury in Older Adults.
  • 2020
  • Ingår i: Frontiers in neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Identification and validation of blood-based biomarkers for the diagnosis and prognosis of mild traumatic brain injury (mTBI) is of critical importance. There have been calls for more research on mTBI in older adults. We compared blood-based protein marker glial fibrillary acidic protein (GFAP) concentrations in serum and in plasma within the same cohort of older adults and assessed their ability to discriminate between individuals based on intracranial abnormalities and functional outcome following mTBI. Methods: A sample of 121 older adults [≥50 years old with head computed tomography (CT), n = 92] seeking medical care for a head injury [Glasgow Coma Scale scores of 14 (n = 6; 5.0%) or 15 (n = 115; 95.0%)] were enrolled from the emergency department (ED). The mean time between injury and blood sampling was 3.4 h (SD = 2.1; range = 0.5-11.7). Serum GFAP concentration was measured first using the Human Neurology 4-Plex Assay, while plasma GFAP concentration was later measured using the GFAP Discovery Kit, both on an HD-1 Single molecule array (Simoa) instrument. Glasgow Outcome Scale-Extended was assessed 1 week after injury. Results: Both serum and plasma GFAP levels were significantly higher in those with abnormal CT scans compared to those with normal head CT scans (plasma: U = 1,198, p < 0.001; serum: U = 1,253, p < 0.001). The ability to discriminate those with and without intracranial abnormalities was comparable between serum (AUC = 0.814) and plasma (AUC = 0.778). In the total sample, GFAP concentrations were considerably higher in plasma than in serum (Wilcoxon signed-rank test z = 0.42, p < 0.001, r = 0.42). Serum and plasma GFAP levels were highly correlated in the total sample and within all subgroups (Spearman's rho range: 0.826-0.907). Both serum and plasma GFAP levels were significantly higher in those with poor compared to good functional outcome (serum: U = 1,625, p = 0.002; plasma: U = 1,539, p = 0.013). Neither plasma (AUC = 0.653) nor serum (AUC = 0.690) GFAP were adequate predictors of functional outcome 1 week after injury. Conclusions: Despite differences in concentration, serum and plasma GFAP levels were highly correlated and had similar discriminability between those with and without intracranial abnormalities on head CT following an mTBI. Neither serum nor plasma GFAP had adequate discriminability to identify patients who would have poor functional outcome.
  •  
18.
  • Thomas, Ilias, et al. (författare)
  • Serum lipidome associates with neuroimaging features in patients with traumatic brain injury
  • 2024
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 27:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute traumatic brain injury (TBI) is associated with substantial abnormalities in lipid biology, including changes in the structural lipids that are present in the myelin in the brain. We investigated the relationship between traumatic microstructural changes in white matter from magnetic resonance imaging (MRI) and quantitative lipidomic changes from blood serum. The study cohort included 103 patients from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. Diffusion tensor fitting generated fractional anisotropy (FA) and mean diffusivity (MD) maps for the MRI scans while ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was applied to analyze the lipidome. Increasing severity of TBI was associated with higher MD and lower FA values, which scaled with different lipidomic signatures. There appears to be consistent patterns of lipid changes associating with the specific microstructure changes in the CNS white matter, but also regional specificity, suggesting that blood-based lipidomics may provide an insight into the underlying pathophysiology of TBI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy