SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pourazar Jamshid 1953 ) "

Sökning: WFRF:(Pourazar Jamshid 1953 )

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antoniewicz, Lukasz, et al. (författare)
  • Chronic snus use in healthy males alters endothelial function and increases arterial stiffness
  • 2022
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Snus usage is commonly touted as a safer alternative to cigarette smoking. However, recent studies have demonstrated possible adverse cardiovascular effects in chronic snus users. The present study evaluates the effects of chronic snus use on vascular function by assessing central arterial stiffness and endothelial vasodilatory function in healthy chronic snus users as compared to matched non-users.Methods and results: Fifty healthy males (24 snus users, 26 age-matched controls) with a mean age of 44 years were included in the study. Arterial stiffness was assessed employing both pulse wave velocity and pulse wave analysis. Endothelial vasodilatory function was measured by venous occlusion plethysmography, utilizing intra-arterial administration of acetylcholine, glyceryl trinitrate and bradykinin to further gauge endothelium-dependent and -independent vasodilatory function. Arterial stiffness was significantly higher in chronic snus users as compared to controls: pulse wave velocity [m/s]: 6.6±0.8 vs 7.1±0.9 resp. (p = 0.026), augmentation index corrected for heart rate [%]: 0.1±13.2 vs 7.3±7.8 resp. (p = 0.023). Endothelial independent vasodilation, i.e. the reaction to glyceryl trinitrate, was significantly lower in snus users as measured by venous occlusion plethysmography.Conclusions: The results of this study show an increased arterial stiffness and an underlying endothelial dysfunction in daily snus users as compared to matched non-tobacco controls. These findings indicate that long-term use of snus may alter the function of the endothelium and therefore reinforces the assertion that chronic snus use is correlated to an increased risk of development of cardiovascular disease.
  •  
2.
  • Eriksson Ström, Jonas, et al. (författare)
  • Airway regulatory T cells are decreased in COPD with a rapid decline in lung function
  • 2020
  • Ingår i: Respiratory Research. - : BioMed Central. - 1465-9921 .- 1465-993X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Differences in the expression of regulatory T cells (Tregs) have been suggested to explain why some smokers develop COPD and some do not. Upregulation of Tregs in response to smoking would restrain airway inflammation and thus the development of COPD; while the absense of such upregulation would over time lead to chronic inflammation and COPD. We hypothesized that—among COPD patients—the same mechanism would affect rate of decline in lung function; specifically, that a decreased expression of Tregs would be associated with a more rapid decline in FEV1.Methods: Bronchoscopy with BAL was performed in 52 subjects recruited from the longitudinal OLIN COPD study; 12 with COPD and a rapid decline in lung function (loss of FEV1 ≥ 60 ml/year), 10 with COPD and a non-rapid decline in lung function (loss of FEV1 ≤ 30 ml/year), 15 current and ex-smokers and 15 non-smokers with normal lung function. BAL lymphocyte subsets were determined using flow cytometry.Results: The proportions of Tregs with regulatory function (FoxP3+/CD4+CD25bright) were significantly lower in COPD subjects with a rapid decline in lung function compared to those with a non-rapid decline (p = 0.019). This result was confirmed in a mixed model regression analysis in which adjustments for inhaled corticosteroid usage, smoking, sex and age were evaluated. No significant difference was found between COPD subjects and smokers or non-smokers with normal lung function.Conclusions: COPD subjects with a rapid decline in lung function had lower proportions of T cells with regulatory function in BAL fluid, suggesting that an inability to suppress the inflammatory response following smoking might lead to a more rapid decline in FEV1.
  •  
3.
  • Eriksson Ström, Jonas, et al. (författare)
  • Chronic obstructive pulmonary disease is associated with epigenome-wide differential methylation in BAL lung cells
  • 2022
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - : American Thoracic Society. - 1044-1549 .- 1535-4989. ; 66:6, s. 638-647
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation patterns in chronic pulmonary obstructive disease (COPD) might offer new insights into disease pathogenesis. To assess methylation profiles in the main COPD target organ, we performed an epigenome-wide association study on BAL cells. Bronchoscopies were performed in 18 subjects with COPD and 15 control subjects (ex- and current smokers). DNA methylation was measured using the Illumina MethylationEPIC BeadChip Kit, covering more than 850,000 CpGs. Differentially methylated positions (DMPs) were examined for 1) enrichment in pathways and functional gene relationships using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology, 2) accelerated aging using Horvath's epigenetic clock, 3) correlation with gene expression, and 4) colocalization with genetic variation. We found 1,155 Bonferroni-significant (P < 6.74 × 10-8) DMPs associated with COPD, many with large effect sizes. Functional analysis identified biologically plausible pathways and gene relationships, including enrichment for transcription factor activity. Strong correlation was found between DNA methylation and chronological age but not between COPD and accelerated aging. For 79 unique DMPs, DNA methylation correlated significantly with gene expression in BAL cells. Thirty-nine percent of DMPs were colocalized with COPD-associated SNPs. To the best of our knowledge, this is the first epigenome-wide association study of COPD on BAL cells, and our analyses revealed many differential methylation sites. Integration with mRNA data showed a strong functional readout for relevant genes, identifying sites where DNA methylation might directly affect expression. Almost half of DMPs were colocated with SNPs identified in previous genome-wide association studies of COPD, suggesting joint genetic and epigenetic pathways related to disease.
  •  
4.
  • Eriksson Ström, Jonas, et al. (författare)
  • Cytotoxic lymphocytes in COPD airways : increased NK cells associated with disease, iNKT and NKT-like cells with current smoking
  • 2018
  • Ingår i: Respiratory Research. - : BMC. - 1465-9921 .- 1465-993X. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cytotoxic lymphocytes are increased in the airways of COPD patients. Whether this increase is driven primarily by the disease or by smoking is not clear, nor whether it correlates with the rate of decline in lung function.Methods: Bronchoscopy with BAL was performed in 52 subjects recruited from the longitudinal OLIN COPD study according to pre-determined criteria; 12 with COPD and a rapid decline in lung function (loss of FEV1 ≥ 60 ml/year), 10 with COPD and a non-rapid decline in lung function (loss of FEV1 ≤ 30 ml/year), 15 current and ex-smokers and 15 non-smokers with normal lung function. BAL lymphocyte subsets were determined using flow cytometry.Results: In BAL fluid, the proportions of NK, iNKT and NKT-like cells all increased with pack-years. Within the COPD group, NK cells – but not iNKT or NKT-like cells – were significantly elevated also in subjects that had quit smoking. In contrast, current smoking was associated with a marked increase in iNKT and NKT-like cells but not in NK cells. Rate of lung function decline did not significantly affect any of the results.Conclusions: In summary, increased proportions of NK cells in BAL fluid were associated with COPD; iNKT and NKT-like cells with current smoking but not with COPD. Interestingly, NK cell percentages did not normalize in COPD subjects that had quit smoking, indicating that these cells might play a role in the continued disease progression seen in COPD even after smoking cessation.Trial registration: Clinicaltrials.gov identifier NCT02729220.
  •  
5.
  •  
6.
  • Friberg, Maria, 1979-, et al. (författare)
  • Human exposure to diesel exhaust induces CYP1A1 expression and AhR activation without a coordinated antioxidant response
  • 2023
  • Ingår i: Particle and Fibre Toxicology. - : BioMed Central (BMC). - 1743-8977. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Diesel exhaust (DE) induces neutrophilia and lymphocytosis in experimentally exposed humans. These responses occur in parallel to nuclear migration of NF-κB and c-Jun, activation of mitogen activated protein kinases and increased production of inflammatory mediators. There remains uncertainty regarding the impact of DE on endogenous antioxidant and xenobiotic defences, mediated by nuclear factor erythroid 2-related factor 2 (Nrf2) and the aryl hydrocarbon receptor (AhR) respectively, and the extent to which cellular antioxidant adaptations protect against the adverse effects of DE.Methods: Using immunohistochemistry we investigated the nuclear localization of Nrf2 and AhR in the epithelium of endobronchial mucosal biopsies from healthy subjects six-hours post exposure to DE (PM10, 300 µg/m3) versus post-filtered air in a randomized double blind study, as a marker of activation. Cytoplasmic expression of cytochrome P450s, family 1, subfamily A, polypeptide 1 (CYP1A1) and subfamily B, Polypeptide 1 (CYP1B1) were examined to confirm AhR activation; with the expression of aldo–keto reductases (AKR1A1, AKR1C1 and AKR1C3), epoxide hydrolase and NAD(P)H dehydrogenase quinone 1 (NQO1) also quantified. Inflammatory and oxidative stress markers were examined to contextualize the responses observed.Results: DE exposure caused an influx of neutrophils to the bronchial airway surface (p = 0.013), as well as increased bronchial submucosal neutrophil (p < 0.001), lymphocyte (p = 0.007) and mast cell (p = 0.002) numbers. In addition, DE exposure enhanced the nuclear translocation of the AhR and increased the CYP1A1 expression in the bronchial epithelium (p = 0.001 and p = 0.028, respectively). Nuclear translocation of AhR was also increased in the submucosal leukocytes (p < 0.001). Epithelial nuclear AhR expression was negatively associated with bronchial submucosal CD3 numbers post DE (r = −0.706, p = 0.002). In contrast, DE did not increase nuclear translocation of Nrf2 and was associated with decreased NQO1 in bronchial epithelial cells (p = 0.02), without affecting CYP1B1, aldo–keto reductases, or epoxide hydrolase protein expression.Conclusion: These in vivo human data confirm earlier cell and animal-based observations of the induction of the AhR and CYP1A1 by diesel exhaust. The induction of phase I xenobiotic response occurred in the absence of the induction of antioxidant or phase II xenobiotic defences at the investigated time point 6 h post-exposures. This suggests DE-associated compounds, such as polycyclic aromatic hydrocarbons (PAHs), may induce acute inflammation and alter detoxification enzymes without concomitant protective cellular adaptations in human airways.
  •  
7.
  • Gouveia-Figueira, Sandra C., et al. (författare)
  • Mass spectrometry profiling reveals altered plasma levels of monohydroxy fatty acids and related lipids in healthy humans after controlled exposure to biodiesel exhaust
  • 2018
  • Ingår i: Analytica Chimica Acta. - : Elsevier. - 0003-2670 .- 1873-4324. ; 1018, s. 62-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental human exposure studies are an effective tool to study adverse health effects from acute inhalation of particulate matter and other constituents of air pollution. In this randomized and double-blinded crossover study, we investigated the systemic effect on bioactive lipid metabolite levels after controlled biodiesel exhaust exposure of healthy humans and compared it to filtered air at a separate exposure occasion. Eicosanoids and other oxylipins, as well as endocannabinoids and related lipids, were quantified in plasma from 14 healthy volunteers at baseline and at three subsequent time points (2, 6, and 24 h) after 1 h exposure sessions. Protocols based on liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) methods were developed to detect temporal changes in circulating levels after biodiesel exhaust exposure. The exhaust was generated by a diesel engine fed with an undiluted rapeseed methyl ester fuel. Among the 51 analyzed lipid metabolites, PGF(2 alpha), 9,10-DiHOME, 9-HODE, 5-HETE, 11-HETE, 12-HETE, and DEA displayed significant responsiveness to the biodiesel exhaust exposure as opposed to filtered air. Of these, 9-HODE and 5-HETE at 24 h survived the 10% false discovery rate cutoff (p < 0.003). Hence, the majority of the responsive lipid metabolites were monohydroxy fatty acids. We conclude that it is possible to detect alterations in circulating bioactive lipid metabolites in response to biodiesel exhaust exposure using LC-MS/MS, with emphasis on metabolites with inflammation related properties and implications on cardiovascular health and disease. These observations aid future investigations on air pollution effects, especially with regard to cardiovascular outcomes.
  •  
8.
  • Hansson, Alva, et al. (författare)
  • Reduced bronchoalveolar macrophage phagocytosis and cytotoxic effects after controlled short-term exposure to wood smoke in healthy humans
  • 2023
  • Ingår i: Particle and Fibre Toxicology. - : BioMed Central (BMC). - 1743-8977. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Exposure to wood smoke has been shown to contribute to adverse respiratory health effects including airway infections, but the underlying mechanisms are unclear. A preceding study failed to confirm any acute inflammation or cell influx in bronchial wash (BW) or bronchoalveolar lavage (BAL) 24 h after wood smoke exposure but showed unexpected reductions in leukocyte numbers. The present study was performed to investigate responses at an earlier phase, regarding potential development of acute inflammation, as well as indications of cytotoxicity.Methods: In a double-blind, randomised crossover study, 14 healthy participants were exposed for 2 h to filtered air and diluted wood smoke from incomplete wood log combustion in a common wood stove with a mean particulate matter concentration of 409 µg/m3. Bronchoscopy with BW and BAL was performed 6 h after exposure. Differential cell counts, assessment of DNA-damage and ex vivo analysis of phagocytic function of phagocytosing BAL cells were performed. Wood smoke particles were also collected for in vitro toxicological analyses using bronchial epithelial cells (BEAS-2B) and alveolar type II-like cells (A549).Results: Exposure to wood smoke increased BAL lactate dehydrogenase (LDH) (p = 0.04) and reduced the ex vivo alveolar macrophage phagocytic capacity (p = 0.03) and viability (p = 0.02) vs. filtered air. BAL eosinophil numbers were increased after wood smoke (p = 0.02), while other cell types were unaffected in BW and BAL. In vitro exposure to wood smoke particles confirmed increased DNA-damage, decreased metabolic activity and cell cycle disturbances.Conclusions: Exposure to wood smoke from incomplete combustion did not induce any acute airway inflammatory cell influx at 6 h, apart from eosinophils. However, there were indications of a cytotoxic reaction with increased LDH, reduced cell viability and impaired alveolar macrophage phagocytic capacity. These findings are in accordance with earlier bronchoscopy findings at 24 h and may provide evidence for the increased susceptibility to infections by biomass smoke exposure, reported in population-based studies.
  •  
9.
  •  
10.
  • Larsson, Niklas, et al. (författare)
  • Plasma and bronchoalveolar lavage fluid oxylipin levels in experimental porcine lung injury
  • 2022
  • Ingår i: Prostaglandins & other lipid mediators. - : Elsevier. - 1098-8823 .- 2212-196X. ; 160
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammatory signaling pathways involving eicosanoids and other regulatory lipid mediators are a subject of intensive study, and a role for these in acute lung injury is not yet well understood. We hypothesized that oxylipin release from lung injury could be detected in bronchoalveolar lavage fluid and in plasma. In a porcine model of surfactant depletion, ventilation with hyperinflation was assessed. Bronchoalveolar lavage and plasma samples were analyzed for 37 different fatty acid metabolites (oxylipins). Over time, hyperinflation altered concentrations of 4 oxylipins in plasma (TXB2, PGE2, 15-HETE and 11-HETE), and 9 oxylipins in bronchoalveolar lavage fluid (PGF2α, PGE2, PGD2, 12,13-DiHOME, 11,12-DiHETrE, 13-HODE, 9-HODE, 15-HETE, 11-HETE). Acute lung injury caused by high tidal volume ventilation in this porcine model was associated with rapid changes in some elements of the oxylipin profile, detectable in lavage fluid, and plasma. These oxylipins may be relevant in the pathogenesis of acute lung injury by hyperinflation.
  •  
11.
  • Lepzien, Rico, et al. (författare)
  • Mapping mononuclear phagocytes in blood, lungs, and lymph nodes of sarcoidosis patients
  • 2019
  • Ingår i: Journal of Leukocyte Biology. - : Society for Leukocyte Biology. - 0741-5400 .- 1938-3673. ; 105:4, s. 797-807
  • Tidskriftsartikel (refereegranskat)abstract
    • Sarcoidosis is a T-cell driven inflammatory disease characterized by granuloma formation. Mononuclear phagocytes (MNPs)-macrophages, monocytes, and dendritic cells (DCs)-are likely critical in sarcoidosis as they initiate and maintain T cell activation and contribute to granuloma formation by cytokine production. Granulomas manifest primarily in lungs and lung-draining lymph nodes (LLNs) but these compartments are less studied compared to blood and bronchoalveolar lavage (BAL). Sarcoidosis can present with an acute onset (usually Lofgren's syndrome (LS)) or a gradual onset (non-LS). LS patients typically recover within 2 years while 60% of non-LS patients maintain granulomas for up to 5 years. Here, four LS and seven non-LS patients underwent bronchoscopy with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). From each patient, blood, BAL, endobronchial biopsies (EBBs), and LLN samples obtained by EBUS-TBNA were collected and MNPs characterized using multicolor flow cytometry. Six MNP subsets were identified at varying frequencies in the anatomical compartments investigated. Importantly, monocytes and DCs were most mature with migratory potential in BAL and EBBs but not in the LLNs suggesting heterogeneity in MNPs in the compartments typically affected in sarcoidosis. Additionally, in LS patients, frequencies of DC subsets were lower or lacking in LLNs and EBBs, respectively, compared to non-LS patients that may be related to the disease outcome. Our work provides a foundation for future investigations of MNPs in sarcoidosis to identify immune profiles of patients at risk of developing severe disease with the aim to provide early treatment to slow down disease progression.
  •  
12.
  • Lepzien, Rico, et al. (författare)
  • Monocytes in sarcoidosis are potent tumour necrosis factor producers and predict disease outcome
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 58:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Pulmonary sarcoidosis is an inflammatory disease characterised by granuloma formation and heterogeneous clinical outcome. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine contributing to granuloma formation and high levels of TNF have been shown to associate with progressive disease. Mononuclear phagocytes (MNPs) are potent producers of TNF and highly responsive to inflammation. In sarcoidosis, alveolar macrophages have been well studied. However, MNPs also include monocytes/monocyte-derived cells and dendritic cells, which are poorly studied in sarcoidosis, despite their central role in inflammation.Objective To determine the role of pulmonary monocyte-derived cells and dendritic cells during sarcoidosis.Methods We performed in-depth phenotypic, functional and transcriptomic analysis of MNP subsets from blood and bronchoalveolar lavage (BAL) fluid from 108 sarcoidosis patients and 30 healthy controls. We followed the clinical development of patients and assessed how the repertoire and function of MNP subsets at diagnosis correlated with 2-year disease outcome.Results Monocytes/monocyte-derived cells were increased in blood and BAL of sarcoidosis patients compared to healthy controls. Interestingly, high frequencies of blood intermediate monocytes at time of diagnosis associated with chronic disease development. RNA sequencing analysis showed highly inflammatory MNPs in BAL of sarcoidosis patients. Furthermore, frequencies of BAL monocytes/ monocyte-derived cells producing TNF without exogenous stimulation at time of diagnosis increased in patients that were followed longitudinally. In contrast to alveolar macrophages, the frequency of TNFproducing BAL monocytes/monocyte-derived cells at time of diagnosis was highest in sarcoidosis patients that developed progressive disease.Conclusion Our data show that pulmonary monocytes/monocyte-derived cells are highly inflammatory and can be used as a predictor of disease outcome in sarcoidosis patients.
  •  
13.
  • Lepzien, Rico, et al. (författare)
  • Mononuclear phagocytes in lungs, lymph nodes and blood of sarcoidosis patients
  • 2018
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 52
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Sarcoidosis is characterized by granuloma formation primarily in the lung and lung-draining lymph nodes (LN). The disease can present with an acute onset (usually Löfgren’s syndrome (LS)) or a gradual onset (non-LS). Mononuclear phagocytes (MNPs) - macrophages, monocytes and dendritic cells (DC) - are likely critical in sarcoidosis as they initiate and maintain T cell activation and contribute to granuloma formation by production of cytokines. MNPs in lung tissue and LN are poorly studied in both, non-LS and LS sarcoidosis patients.Aim: To characterise the distribution and phenotype of MNPs in BAL, endobronchial biopsies (EBB), LN sampled by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and blood from the same non-LS or LS sarcoidosis patients.Results: We identified MNPs from all four anatomical compartments in non-LS (n=7) and LS (n=4) sarcoidosis patients. Blood, BAL and LN contained all MNP subsets while EBB only harboured one of three monocyte subsets. Frequencies, maturation and migratory status were different between the compartments as well as between non-LS and LS patients. Our results suggest heterogeneity in distribution and function of MNPs within organs typically affected in sarcoidosis and their potential involvement in the disease course.Conclusions: We show that cells from BAL fluid do not necessarily reflect cells from EBB, a tissue primarily affected by granuloma formation. Our work provides a foundation for future investigations of MNPs in non-LS and LS sarcoidosis patients, allowing improved stratification to identify patients at risk of developing severe disease and provide early treatment to slow down disease progression.
  •  
14.
  • Linder, Robert, 1981-, et al. (författare)
  • Proteolytic imbalance is related to FEV1 decline in COPD
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • BackgroundIt is generally accepted that metalloproteinases contribute to lung tissue destruction. This study intends to examine how proteolytic imbalance impacts COPD in relation to phenotypes of non-rapid and rapid decline in lung function, by clinically assessing subjects recruited from a population-based cohort.MethodsSubjects were recruited from the longitudinal OLIN COPD study providing spirometry data over time. In total 52 subjects were included: 12 with COPD and a rapid decline in FEV1 (≥60 mL/year), 10 with COPD and a non-rapid decline in FEV1 (≤30 mL/year), 15 current and ex-smokers with normal lung function, and 15 non-smokers with normal lung function. Proteolytic markers MMP-9, MMP-12 and TIMP-1 were assessed in serum and airway lavages.ResultsMMP-12 in BW and BAL was higher in COPD compared to both ever- smokers (BW: p = 0.001, BAL: p = 0.001) and non-smokers with normal lung function (BW: p = 0.001, BAL: p = 0.001). BAL-MMP-12 in COPD displayed a positive association to annual decline in FEV1(r = 0.61, p = 0.005). The lowest concentration of S-TIMP-1 (477 (295- 717) ng/mL) was found in COPD with a rapid decline in lung function, with a negative association between annual decline in FEV1 and s-TIMP- 1 (r = -0.42, p = 0.05).ConclusionAirway protease activity measured as MMP-12 concentration in BAL was increased in COPD, compared to both smokers with normal lung function and healthy. Individuals with the highest levels of airway MMP- 12 experienced the greatest decline in FEV1. Furthermore, a negative association was found between TIMP-1 in serum and FEV1 decline. Increased airway proteolytic activity may play an important role in the progress of COPD.
  •  
15.
  • Muala, Ala, et al. (författare)
  • Small airways effects of exposure to wood smoke
  • 2019
  • Ingår i: European Respiratory Journal. - Sheffield : European Respiratory Society Journals. - 0903-1936 .- 1399-3003. ; 54
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
16.
  • Pourazar, Jamshid, 1953- (författare)
  • Activation of epithelial signal transduction pathways, cytokine production and airway inflammation following diesel exhaust exposure
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Adverse health effects of ambient air pollution are well recognised and include increased morbidity and mortality in respiratory and cardiovascular diseases. Diesel engines are major contributors to ambient particulate matter pollution and diesel particles have been shown to have strong toxicological and oxidative properties.Mechanistic aspects of diesel engine exhaust exposure have been investigated in bronchial mucosal biopsies sampled during bronchoscopy of human subjects exposed in a validated experimental exposure set-up. Two exposure series were performed. Two separate groups of 15 healthy subjects each were exposed to filtered air and diesel exhaust during 1 hour in random order. The first exposure series was performed with the engine at idling with a PM10 concentration of 300µg/m3 and the second was carried out during urban cycle (European Transient Cycle) running conditions with 270 µg particles/m3. Bronchoscopies with sampling of bronchial mucosal biopsies were performed 6 hours after exposure. Biopsies fixed in acetone were bedded in glycolmethacrylate (GMA) resin and were stained for immunohistochemistry. Readings were done with light microscopy as well as image analyser with digital stainings processing of.Diesel exhaust enhanced the expression of the cytokines IL-8 and GRO-α in the bronchial epithelium suggesting that the epithelium plays a major role in mediating the neutrophil-dominated airway mucosal inflammation. The bronchial expression of Th1 and Th2 cytokines was evaluated, addressing the hypothesis that diesel exhaust would induce a Th2 airway response. Diesel exhaust enhanced the expression of Th2 related cytokine IL-13 whereas the expression of Th1 cytokines was unaffected.The investigation of epithelial signal transduction pathways, by means of newly developed and validated cytoplasmic and nuclear stainings for key transcription factors and kinases, demonstrated that exposure to diesel exhaust increased the nuclear translocation of redox sensitive signal transduction components including phosphorylated (p)-p38-MAPK, p-JNK, p-c-jun (AP-1) and p65 (NFκB). These findings indicate novel mechanistic aspects to be involved in the airway response to particulate air pollution.The expression of epidermal growth factor receptor (EGFR) as well as phosphorylated C-terminal Tyr 1173 increased significantly following DE exposure. The findings are consistent with the upregulation of p38 and JNK MAPkinases as well as increased NFκB expression. The MEK-ERK pathway was not affected and Src related phosphorylation was absent.Diesel exposure at urban European transient cycle running conditions resulted in upregulation of the vascular adhesion molecule expression in the bronchial mucosa as signs of an early inflammatory response, while infiltration of inflammatory cells had not yet occurred. Differences in organic composition and particle concentration in the exhaust compared to idling situation may have influenced the outcome.This thesis has added a mechanistic basis for the diesel exhaust induced airway inflammation in-vivo in humans. It is concluded that activation of epithelial signal transduction pathways, cytokine production and increased endothelial adhesion molecule expression play important roles in the airway inflammatory response to diesel exhaust.
  •  
17.
  •  
18.
  • Roos-Engstrand, Ester, 1962-, et al. (författare)
  • Cytotoxic T cells expressing the co-stimulatory receptor NKG2D are increased in cigarette smoking and COPD
  • 2010
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 11, s. 128-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A suggested role for T cells in COPD pathogenesis is based on associations between increased lung cytotoxic T lymphocyte (CD8+) numbers and airflow limitation. CD69 is an early T cell activation marker. NKG2D receptors are co-stimulatory molecules induced on CD8+ T cells upon activation. The activating function of NKG2D is triggered by binding to the MHC class 1 chain-related (MIC) molecules A and B, expressed on surface of stressed epithelial cells. The aim of this study was to evaluate the expression of MIC A and B in the bronchial epithelium and NKG2D and CD69 on BAL lymphocytes in subjects with COPD, compared to smokers with normal lung function and healthy never-smokers.Methods: Bronchoscopy with airway lavages and endobronchial mucosal biopsy sampling was performed in 35 patients with COPD, 21 healthy never-smokers and 16 smokers with normal lung function. Biopsies were immunohistochemically stained and BAL lymphocyte subsets were determined using flow cytometry. Results: Epithelial CD3+ lymphocytes were increased in both smokers with normal lung function and in COPD patients, compared to never-smokers. Epithelial CD8+ lymphocyte numbers were higher in the COPD group compared to never-smoking controls. Among gated CD3+cells, the percentage of CD8+ NKG2D+ cells was enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. The percentage of CD8+ CD69+ cells and cell surface expression of CD69 were enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. No changes in the expression of MIC A or MIC B in the airway epithelium could be detected between the groups, whereas significantly decreased soluble MICB was detected in bronchial wash from smokers with normal lung function, compared to never-smokers.Conclusions: In COPD, we found increased numbers of cytotoxic T cells in both bronchial epithelium and airway lumen. Further, the proportions of CD69- and NKG2D-expressing cytotoxic T cells in BAL fluid were enhanced in both subjects with COPD and smokers with normal lung function and increased expression of CD69 was found on CD8+ cells, indicating the cigarette smoke exposure-induced expansion of activated cytotoxic T cells, which potentially can respond to stressed epithelial cells.
  •  
19.
  • Roos-Engstrand, Ester, 1962-, et al. (författare)
  • Expansion of helper T cells with a non-regulatory function in smoking and COPD
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Regulatory T cells have been implicated in the pathogenesis of COPD by the increased expression of CD25 on helper T cells. Regulatory CD4+ T cells are reported to have increased intracellular expression of FoxP3 and low/absent CD127 expression on the cell surface. Here, these markers were investigated in BALF from nine COPD subjects and compared to fourteen smokers with normal lung function and nine never-smokers. In smokers with normal lung function, the expression of CD25 on CD4+ lymphocytes was increased, whereas the proportions of FoxP3+ and CD127+ were unchanged compared to never-smokers. Among the population of helper T cells expressing high levels of CD25, the proportion FoxP3+ cells was decreased and the percentage CD127+ was increased in smokers with normal lung function. CD25+ helper T cells with low/absent CD127 expression were increased in smokers with normal lung function, but not in COPD, when compared to never smokers. In COPD, a decrease in CD127 expression on CD4+CD25+ was observed in ex-smokers compared to current smokers. Smoking induces the expansion of activated airway helper T cells that seem to persist after COPD development. The reduction of FoxP3 expression indicates that the increase in CD25 expression is not only associated with the expansion of regulatory T cells. Instead, the high CD127 and low FoxP3 expressions implicate a predominantly non-regulatory CD25+ helper T cell population in stable COPD. In some smokers with normal lung function, we identified a helper T cell population with a putative regulatory function, which may be protective against COPD development.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20
Typ av publikation
tidskriftsartikel (17)
annan publikation (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Pourazar, Jamshid, 1 ... (20)
Blomberg, Anders, 19 ... (16)
Behndig, Annelie F., ... (14)
Rankin, Gregory (9)
Muala, Ala (8)
Sandström, Thomas, 1 ... (7)
visa fler...
Lindberg, Anne (5)
Boman, Christoffer (5)
Lindgren, Robert (5)
Bosson, Jenny A., 19 ... (4)
Eriksson Ström, Jona ... (4)
Linder, Robert, 1981 ... (4)
Bucht, Anders (3)
Eklund, Anders (3)
Lepzien, Rico (3)
Grunewald, Johan (3)
Nording, Malin L., 1 ... (2)
Lopez, N (2)
Öhberg, Fredrik, 196 ... (1)
Haney, Michael (1)
Kebede Merid, Simon (1)
Bottai, Matteo (1)
Melén, Erik (1)
Larsson, Niklas (1)
Ekström, Tomas J. (1)
Gouveia-Figueira, Sa ... (1)
Gouveia-Figueira, Sa ... (1)
Antoniewicz, Lukasz (1)
Lundbäck, Magnus (1)
Kabele, Mikael (1)
Nilsson, Ulf, 1974- (1)
Baharom, Faezzah (1)
Smed-Sorensen, Anna (1)
Smed-Sörensen, Anna (1)
Kullberg, Susanna (1)
Mudway, I.S. (1)
Czarnewski, Paulo (1)
Lehtipalo, Stefan (1)
Kelly, F J (1)
Unosson, Jon (1)
Österberg, Björn (1)
García-López, Naxto (1)
Claesson, Jonas (1)
Hagemann-Jensen, Mic ... (1)
Ringh, Mikael V. (1)
Friberg, Maria, 1979 ... (1)
Bosson, J.A. (1)
Barath, S. (1)
Dove, R. (1)
Glencross, D. (1)
visa färre...
Lärosäte
Umeå universitet (20)
Karolinska Institutet (4)
Stockholms universitet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy