SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Poveda Katja) "

Sökning: WFRF:(Poveda Katja)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alexandridis, Nikolaos, et al. (författare)
  • Archetype models upscale understanding of natural pest control response to land-use change
  • 2022
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 32:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Control of crop pests by shifting host plant availability and natural enemy activity at landscape scales has great potential to enhance the sustainability of agriculture. However, mainstreaming natural pest control requires improved understanding of how its benefits can be realized across a variety of agroecological contexts. Empirical studies suggest significant but highly variable responses of natural pest control to land-use change. Current ecological models are either too specific to provide insight across agroecosystems, or too generic to guide management with actionable predictions. We suggest getting the full benefit of available empirical, theoretical and methodological knowledge, by combining trait-mediated understanding from correlative studies with the explicit representation of causal relationships achieved by mechanistic modeling. To link these frameworks, we adapt the concept of archetypes, or context-specific generalizations, from sustainability science. Similar responses of natural pest control to land-use gradients across cases that share key attributes, such as functional traits of focal organisms, indicate general processes that drive system behavior in a context-sensitive manner. Based on such observations of natural pest control, a systematic definition of archetypes can provide the basis for mechanistic models of intermediate generality that cover all major agroecosystems worldwide. Example applications demonstrate the potential for upscaling understanding and improving prediction of natural pest control, based on knowledge transfer and scientific synthesis. A broader application of this mechanistic archetype approach promises to enhance ecology's contribution to natural resource management across diverse regions and social-ecological contexts.
  •  
2.
  • Alexandridis, Nikolaos, et al. (författare)
  • Climate change and ecological intensification of agriculture in sub-Saharan Africa : A systems approach to predict maize yield under push-pull technology
  • 2023
  • Ingår i: Agriculture, Ecosystems and Environment. - 0167-8809 .- 1873-2305. ; 352
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing effects of climate change on agricultural systems and the potential for ecological intensification to increase food security in developing countries is essential to guide management, policy-making and future research. ‘Push-pull’ technology (PPT) is a poly-cropping design developed in eastern Africa that utilizes plant chemicals to mediate plant–insect interactions. PPT application yields significant increases in crop productivity, by reducing pest load and damage caused by arthropods and parasitic weeds, while also bolstering soil fertility. As climate change effects may be species- and/or context-specific, there is need to elucidate how, in interaction with biotic factors, projected climate conditions are likely to influence future functioning of PPT. Here, we first reviewed how changes in temperature, precipitation and atmospheric CO2 concentration can influence PPT components (i.e., land use, soils, crops, weeds, diseases, pests and their natural enemies) across sub-Saharan Africa (SSA). We then imposed these anticipated responses on a landscape-scale qualitative mathematical model of maize production under PPT in eastern Africa, to predict cumulative, structure-mediated impacts of climate change on maize yield. Our review suggests variable impacts of climate change on PPT components in SSA by the end of the 21st century, including reduced soil fertility, increased weed and arthropod pest pressure and increased prevalence of crop diseases, but also increased biological control by pests’ natural enemies. Extrapolating empirical evidence of climate effects to predict responses to projected climate conditions is mainly limited by a lack of mechanistic understanding regarding single and interactive effects of climate variables on PPT components. Model predictions of maize yield responses to anticipated impacts of climate change in eastern Africa suggest predominantly negative future trends. Nevertheless, maize yields can be sustained or increased by favourable changes in system components with less certain future behaviour, including higher PPT adoption, preservation of field edge density and agricultural diversification beyond cereal crops.
  •  
3.
  • Alexandridis, Nikolaos, et al. (författare)
  • Climate change and ecological intensification of agriculture in sub-Saharan Africa – A systems approach to predict maize yield under push-pull technology
  • 2023
  • Ingår i: Agriculture, Ecosystems & Environment. - 0167-8809 .- 1873-2305. ; 352
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing effects of climate change on agricultural systems and the potential for ecological intensification to increase food security in developing countries is essential to guide management, policy-making and future research. ‘Push-pull’ technology (PPT) is a poly-cropping design developed in eastern Africa that utilizes plant chemicals to mediate plant–insect interactions. PPT application yields significant increases in crop productivity, by reducing pest load and damage caused by arthropods and parasitic weeds, while also bolstering soil fertility. As climate change effects may be species- and/or context-specific, there is need to elucidate how, in interaction with biotic factors, projected climate conditions are likely to influence future functioning of PPT. Here, we first reviewed how changes in temperature, precipitation and atmospheric CO2 concentration can influence PPT components (i.e., land use, soils, crops, weeds, diseases, pests and their natural enemies) across sub-Saharan Africa (SSA). We then imposed these anticipated responses on a landscape-scale qualitative mathematical model of maize production under PPT in eastern Africa, to predict cumulative, structure-mediated impacts of climate change on maize yield. Our review suggests variable impacts of climate change on PPT components in SSA by the end of the 21st century, including reduced soil fertility, increased weed and arthropod pest pressure and increased prevalence of crop diseases, but also increased biological control by pests’ natural enemies. Extrapolating empirical evidence of climate effects to predict responses to projected climate conditions is mainly limited by a lack of mechanistic understanding regarding single and interactive effects of climate variables on PPT components. Model predictions of maize yield responses to anticipated impacts of climate change in eastern Africa suggest predominantly negative future trends. Nevertheless, maize yields can be sustained or increased by favourable changes in system components with less certain future behaviour, including higher PPT adoption, preservation of field edge density and agricultural diversification beyond cereal crops.
  •  
4.
  • Alexandridis, Nikolaos, et al. (författare)
  • Models of natural pest control : Towards predictions across agricultural landscapes
  • 2021
  • Ingår i: Biological Control. - : Elsevier BV. - 1049-9644. ; 163
  • Forskningsöversikt (refereegranskat)abstract
    • Natural control of invertebrate crop pests has the potential to complement or replace conventional insecticide-based practices, but its mainstream application is hampered by predictive unreliability across agroecosystems. Inconsistent responses of natural pest control to changes in landscape characteristics have been attributed to ecological complexity and system-specific conditions. Here, we review agroecological models and their potential to provide predictions of natural pest control across agricultural landscapes. Existing models have used a multitude of techniques to represent specific crop-pest-enemy systems at various spatiotemporal scales, but less wealthy regions of the world are underrepresented. A realistic representation of natural pest control across systems appears to be hindered by a practical trade-off between generality and realism. Nonetheless, observations of context-sensitive, trait-mediated responses of natural pest control to land-use gradients indicate the potential of ecological models that explicitly represent the underlying mechanisms. We conclude that modelling natural pest control across agroecosystems should exploit existing mechanistic techniques towards a framework of contextually bound generalizations. Observed similarities in causal relationships can inform the functional grouping of diverse agroecosystems worldwide and the development of the respective models based on general, but context-sensitive, ecological mechanisms. The combined use of qualitative and quantitative techniques should allow the flexible integration of empirical evidence and ecological theory for robust predictions of natural pest control across a wide range of agroecological contexts and levels of knowledge availability. We highlight challenges and promising directions towards developing such a general modelling framework.
  •  
5.
  • De Palma, Adriana, et al. (författare)
  • Predicting bee community responses to land-use changes : effects of geographic and taxonomic biases
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
  •  
6.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
7.
  • Hudson, Lawrence N., et al. (författare)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
8.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
9.
  • Lichtenberg, Elinor M., et al. (författare)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (8)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Poveda, Katja (8)
Clough, Yann (5)
Jonsson, Mattias (4)
Tscharntke, Teja (4)
Alexandridis, Nikola ... (4)
Ekroos, Johan (3)
visa fler...
Abrahamczyk, Stefan (3)
Entling, Martin H. (3)
Goulson, Dave (3)
Grab, Heather (3)
Herzog, Felix (3)
Aizen, Marcelo A. (3)
Petanidou, Theodora (3)
Stout, Jane C. (3)
Chaplin-Kramer, Rebe ... (3)
Martin, Emily A (3)
Batáry, Péter (3)
Steffan-Dewenter, In ... (3)
Hylander, Kristoffer (2)
Smith, Henrik G. (2)
Jonsell, Mats (2)
Brunet, Jörg (2)
Kolb, Annette (2)
Sáfián, Szabolcs (2)
Persson, Anna S. (2)
Franzén, Markus (2)
Jung, Martin (2)
Nilsson, Sven G (2)
Berg, Åke (2)
Dainese, Matteo (2)
Knop, Eva (2)
Woodcock, Ben A. (2)
Marion, Glenn (2)
Karp, Daniel S (2)
Meyer, Carsten (2)
O'Rourke, Megan E (2)
Pontarp, Mikael (2)
Seppelt, Ralf (2)
Feit, Benjamin (2)
Kihara, Job (2)
Luttermoser, Tim (2)
May, Wilhelm (2)
Midega, Charles (2)
Öborn, Ingrid (2)
Sileshi, Gudeta W. (2)
Krauss, Jochen (2)
Westphal, Catrin (2)
Edenius, Lars (2)
Rader, Romina (2)
Baeten, Lander (2)
visa färre...
Lärosäte
Lunds universitet (9)
Sveriges Lantbruksuniversitet (8)
Stockholms universitet (5)
Umeå universitet (2)
Linnéuniversitetet (2)
Göteborgs universitet (1)
visa fler...
Uppsala universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Lantbruksvetenskap (5)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy