SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prehn C.) "

Sökning: WFRF:(Prehn C.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Galluzzi, L, et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.
  • 2009
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 16:8, s. 1093-107
  • Forskningsöversikt (refereegranskat)abstract
    • Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
  •  
5.
  •  
6.
  •  
7.
  • Guida, Florence, et al. (författare)
  • The blood metabolome of incident kidney cancer: A case-control study nested within the MetKid consortium
  • 2021
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLOS). - 1549-1277 .- 1549-1676. ; 18:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Excess bodyweight and related metabolic perturbations have been implicated in kidney cancer aetiology, but the specific molecular mechanisms underlying these relationships are poorly understood. In this study, we sought to identify circulating metabolites that predispose kidney cancer and to evaluate the extent to which they are influenced by body mass index (BMI).Methods and findings: We assessed the association between circulating levels of 1,416 metabolites and incident kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case–control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years after blood collection. We found 25 metabolites robustly associated with kidney cancer risk. In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including 8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75 (95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10−8). In contrast, 4 amino acids, including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10−5), were positively associated with risk. Adjusting for BMI partly attenuated the risk association for some—but not all—metabolites, whereas other known risk factors of kidney cancer, such as smoking and alcohol consumption, had minimal impact on the observed associations. A mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome highlighted that some metabolites associated with kidney cancer risk are influenced by BMI. Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found inversely associated with kidney cancer risk (e.g., −0.17 SD change [ßBMI] in 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10−5). BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10−3). While our results were robust across the participating studies, they were limited to study participants of European descent, and it will, therefore, be important to evaluate if our findings can be generalised to populations with different genetic backgrounds.Conclusions: This study suggests a potentially important role of the blood metabolome in kidney cancer aetiology by highlighting a wide range of metabolites associated with the risk of developing kidney cancer and the extent to which changes in levels of these metabolites are driven by BMI - the principal modifiable risk factor of kidney cancer.
  •  
8.
  •  
9.
  • Crivello, M., et al. (författare)
  • Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model
  • 2019
  • Ingår i: Disease Models and Mechanisms. - : Company of Biologists Ltd. - 1754-8403 .- 1754-8411. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) presents a poorly understood pathogenesis. Evidence from patients and mutant SOD1 mouse models suggests vascular damage may precede or aggravate motor dysfunction in ALS. We have previously shown angiogenin (ANG) treatment enhances motor neuron survival, delays motor dysfunction and prevents vascular regression in the SOD1G93A ALS model. However, the existence of vascular defects at different stages of disease progression remains to be established in other ALS models. Here, we assessed vascular integrity in vivo throughout different disease stages, and investigated whether ANG treatment reverses vascular regression and prolongs motor neuron survival in the FUS (1-359) mouse model of ALS. Lumbar spinal cord tissue was collected from FUS (1-359) and non-transgenic control mice at postnatal day (P)50, P90 and P120. We found a significant decrease in vascular network density in lumbar spinal cords from FUS (1-359) mice by day 90, at which point motor neuron numbers were unaffected. ANG treatment did not affect survival or counter vascular regression. Endogenous Ang1 and Vegf expression were unchanged at P50 and P90; however, we found a significant decrease in miRNA 126 at P50, indicating vascular integrity in FUS mice may be compromised via an alternative pathway. Our study demonstrates that vascular regression occurs before motor neuron degeneration in FUS (1-359) mice, and highlights that heterogeneity in responses to novel ALS therapeutics can already be detected in preclinical mouse models of ALS.
  •  
10.
  • Floegel, A., et al. (författare)
  • Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam
  • 2013
  • Ingår i: European Journal of Clinical Nutrition. - : Springer Science and Business Media LLC. - 0954-3007 .- 1476-5640. ; 67:10, s. 1100-1108
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND/OBJECTIVE: Serum metabolites have been linked to higher risk of chronic diseases but determinants of serum metabolites are not clear. We aimed to investigate the association between habitual diet as a modifiable risk factor and relevant serum metabolites. SUBJECTS/METHODS: This cross-sectional study comprised 2380 EPIC-Potsdam participants. Intake of 45 food groups was assessed by food frequency questionnaire and concentrations of 127 serum metabolites were measured by targeted metabolomics. Reduced rank regression was used to find dietary patterns that explain the maximum variation of metabolites. RESULTS: In the multivariable-adjusted model, the proportion of explained variation by habitual diet was ranked as follows: acyl-alkyl-phosphatidylcholines (5.7%), sphingomyelins (5.1%), diacyl-phosphatidylcholines (4.4%), lyso-phosphatidylcholines (4.1%), acylcarnitines (3.5%), amino acids (2.2%) and hexose (1.6%). A pattern with high intake of butter and low intake of margarine was related to acylcarnitines, acyl-alkyl-phosphatidylcholines, lyso-phosphatidylcholines and hydroxy-sphingomyelins, particularly with saturated and monounsaturated fatty acid side chains. A pattern with high intake of red meat and fish and low intake of whole-grain bread and tea was related to hexose and phosphatidylcholines. A pattern consisting of high intake of potatoes, dairy products and cornflakes particularly explained methionine and branched chain amino acids. Dietary patterns related to type 2 diabetes-relevant metabolites included high intake of red meat and low intake of whole-grain bread, tea, coffee, cake and cookies, canned fruits and fish. CONCLUSIONS: Dietary patterns characterized by intakes of red meat, whole-grain bread, tea and coffee were linked to relevant metabolites and could be potential targets for chronic disease prevention.
  •  
11.
  • Gudmundsdottir, Valborg, et al. (författare)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
12.
  • Rothwell, Joseph A., et al. (författare)
  • Circulating amino acid levels and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition and UK Biobank cohorts
  • 2023
  • Ingår i: BMC Medicine. - : BioMed Central (BMC). - 1741-7015. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Amino acid metabolism is dysregulated in colorectal cancer patients; however, it is not clear whether pre-diagnostic levels of amino acids are associated with subsequent risk of colorectal cancer. We investigated circulating levels of amino acids in relation to colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) and UK Biobank cohorts.Methods: Concentrations of 13-21 amino acids were determined in baseline fasting plasma or serum samples in 654 incident colorectal cancer cases and 654 matched controls in EPIC. Amino acids associated with colorectal cancer risk following adjustment for the false discovery rate (FDR) were then tested for associations in the UK Biobank, for which measurements of 9 amino acids were available in 111,323 participants, of which 1221 were incident colorectal cancer cases.Results: Histidine levels were inversely associated with colorectal cancer risk in EPIC (odds ratio [OR] 0.80 per standard deviation [SD], 95% confidence interval [CI] 0.69–0.92, FDR P-value=0.03) and in UK Biobank (HR 0.93 per SD, 95% CI 0.87–0.99, P-value=0.03). Glutamine levels were borderline inversely associated with colorectal cancer risk in EPIC (OR 0.85 per SD, 95% CI 0.75–0.97, FDR P-value=0.08) and similarly in UK Biobank (HR 0.95, 95% CI 0.89–1.01, P=0.09) In both cohorts, associations changed only minimally when cases diagnosed within 2 or 5 years of follow-up were excluded.Conclusions: Higher circulating levels of histidine were associated with a lower risk of colorectal cancer in two large prospective cohorts. Further research to ascertain the role of histidine metabolism and potentially that of glutamine in colorectal cancer development is warranted.
  •  
13.
  • Rothwell, Joseph A., et al. (författare)
  • Metabolic signatures of healthy lifestyle patterns and colorectal cancer risk in a European cohort
  • 2022
  • Ingår i: Clinical Gastroenterology and Hepatology. - : Elsevier. - 1542-3565 .- 1542-7714. ; 20:5, s. e1061-e1082
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort.Methods: Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1–5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5738 cancer-free European Prospective Investigation into Cancer and Nutrition participants with metabolomics data. Partial least-squares regression was used to derive fatty acid and endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95% CIs were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression.Results: Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely associated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95% CI, 0.29–0.90; endogenous metabolites: OR, 0.62 per unit change; 95% CI, 0.50–0.78) than the WCRF/AICR score (OR, 0.93 per unit change; 95% CI, 0.86–1.00) overall. Signature associations were stronger in male compared with female participants.Conclusions: Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of a healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer.
  •  
14.
  •  
15.
  • Vehmas, A. P., et al. (författare)
  • Liver lipid metabolism is altered by increased circulating estrogen to androgen ratio in male mouse
  • 2016
  • Ingår i: Journal of Proteomics. - : Elsevier BV. - 1874-3919. ; 133, s. 66-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are suggested to lower the risk of developing metabolic syndrome in both sexes. In this study, we investigated how the increased circulating estrogen-to-androgen ratio (E/A) alters liver lipid metabolism in males. The cytochrome P450 aromatase (P450arom) is an enzyme converting androgens to estrogens. Male mice overexpressing human aromatase enzyme (AROM + mice), and thus have high circulating E/A, were used as a model in this study. Proteomics and gene expression analyses indicated an increase in the peroxisomal beta-oxidation in the liver of AROM + mice as compared with their wild type littermates. Correspondingly, metabolomic analysis revealed a decrease in the amount of phosphatidylcholines with long-chain fatty acids in the plasma. With interest we noted that the expression of Cyp4a12a enzyme, which specifically metabolizes arachidonic acid (AA) to 20-hydroxy AA, was dramatically decreased in the AROM + liver. As a consequence, increased amounts of phospholipids having AA as a fatty acid tail were detected in the plasma of the AROM + mice. Overall, these observations demonstrate that high circulating E/A in males is linked to indicators of higher peroxisomal beta-oxidation and lower AA metabolism in the liver. Furthermore, the plasma phospholipid profile reflects the changes in the liver lipid metabolism. (C) 2015 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy