SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Puglisi Maria A) "

Search: WFRF:(Puglisi Maria A)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abazajian, Kevork, et al. (author)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Journal article (peer-reviewed)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
2.
  •  
3.
  •  
4.
  • Ade, Peter, et al. (author)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
5.
  • Torrisi, Lorenzo, et al. (author)
  • High intensity laser-generating plasmas in forward direction in thin films and Thomson parabola spectrometer monitorage
  • 2010
  • Reports (other academic/artistic)abstract
    • Asterix laser at PALS Laboratory of Prague, operating at 1315 nm fundamental wavelength, 300 ps pulse duration, 1016 W/cm2 intensity and single pulse mode, was employed to irradiate thin hydrogenated targets placed in high vacuum. Non-equilibrium plasmas were obtained in forward direction, i.e. along the normal to the target surface on the rear of the irradiated thin films. Plasmas were monitored with different ion detectors, placed around the direction normal to the target. The main detector was a Thomson parabola spectrometer aligned along the normal in forward direction. This spectrometer permits to provide many plasma parameters concerning the involved ions (energy, charge state, mass,...) obtained in a single laser shot. The spectrometer images, obtained by using a MCP coupled to a fast CCD camera, can be processed by a comparison with the simulation data obtained by a proper software. High ion energies and charge states have been obtained as a function of the laser parameters, target thickness and composition and irradiation conditions.
  •  
6.
  • Torrisi, Lorenzo, et al. (author)
  • Proton driven acceleration by intense laser pulses irradiating thin hydrogenated targets
  • 2013
  • In: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 272, s. 2-5
  • Journal article (peer-reviewed)abstract
    • The Asterix iodine laser of the PALS laboratory in Prague, operating at 1315 nm fundamental frequency, 300 ps pulse duration, 600 J maximum pulse energy and 1016 W/cm2 intensity, is employed to irradiatethin hydrogenated targets placed in high vacuum. Different metallic and polymeric targets allow togenerate multi-energetic and multi-specie ion beams showing peculiar properties. The plasma obtainedby the laser irradiation is monitored, in terms of properties of the emitted charge particles, by using time-of-flight techniques and Thomson parabola spectrometer (TPS). A particular attention is given tothe proton beam production in terms of the maximum energy, emission yield and angular distributionas a function of the laser energy, focal position (FP), target thickness and composition.
  •  
7.
  • Ola, Thomas O, et al. (author)
  • Importin beta : A novel autoantigen in human autoimmunity identified by screening random peptide libraries on phage
  • 2006
  • In: Journal of Autoimmunity. - : Elsevier BV. - 0896-8411 .- 1095-9157. ; 26:3, s. 197-207
  • Journal article (peer-reviewed)abstract
    • By screening random peptide libraries (RPLs) with sera of Type 1 diabetes (T1D) patients, we previously identified 5 disease-specific 'mimotopes' displayed on phages (phagotopes). We already characterised 1 phagotope (CH1p), as an epitope of human osteopontin, an autoantigen expressed within the somatostatin cells of human islets. In this paper, we report the characterization of the second phagotope, 195Dyn, by immunohistochemistry, Western Blotting and screening of a human islet cDNA library using rabbit anti-195Dyn antibodies. The 195Dyn mimotope was detected in human islets. The screening of a λgt11 cDNA library from human islets has identified a clone, which corresponded to human importin beta. ELISA detected autoantibodies against this protein in sera of around 60% of TD1 patients and in 30% of patients affected by other autoimmune diseases. In summary, RPLs technology proved again successful in identifying another novel autoantigen (importin beta), whose significance in the autoimmune process remains to be fully elucidated. © 2006 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view