SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pujari Palmer Michael Dr. 1978 ) "

Search: WFRF:(Pujari Palmer Michael Dr. 1978 )

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Svensson, Sara, 1981, et al. (author)
  • Monocytes and pyrophosphate promote mesenchymal stem cell viability and early osteogenic differentiation
  • 2022
  • In: Journal of Materials Science-Materials in Medicine. - : Springer Science and Business Media LLC. - 0957-4530 .- 1573-4838. ; 33:1
  • Journal article (peer-reviewed)abstract
    • Pyrophosphate-containing calcium phosphate implants promote osteoinduction and bone regeneration. The role of pyrophosphate for inflammatory cell-mesenchymal stem cell (MSC) cross-talk during osteogenesis is not known. In the present work, the effects of lipopolysaccharide (LPS) and pyrophosphate (PPi) on primary human monocytes and on osteogenic gene expression in human adipose-derived MSCs were evaluated in vitro, using conditioned media transfer as well as direct effect systems. Direct exposure to pyrophosphate increased nonadherent monocyte survival (by 120% without LPS and 235% with LPS) and MSC viability (LDH) (by 16-19% with and without LPS). Conditioned media from LPS-primed monocytes significantly upregulated osteogenic genes (ALP and RUNX2) and downregulated adipogenic (PPAR-gamma) and chondrogenic (SOX9) genes in recipient MSCs. Moreover, the inclusion of PPi (250 mu M) resulted in a 1.2- to 2-fold significant downregulation of SOX9 in the recipient MSCs, irrespective of LPS stimulation or culture media type. These results indicate that conditioned media from LPS-stimulated inflammatory monocytes potentiates the early MSCs commitment towards the osteogenic lineage and that direct pyrophosphate exposure to MSCs can promote their viability and reduce their chondrogenic gene expression. These results are the first to show that pyrophosphate can act as a survival factor for both human MSCs and primary monocytes and can influence the early MSC gene expression.
  •  
2.
  • Atif, Abdul Raouf, 1996-, et al. (author)
  • Influence of flow in the adhesion and proliferation of cells on hydroxyapatite integrated in a microscale culture
  • 2021
  • Conference paper (other academic/artistic)abstract
    • INTRODUCTION: Synthetic biomaterials, such as calcium phosphate cements (CPCs), are a promising alternative to autologous bone to enhance bone regeneration. Calcium-deficient hydroxyapatite (CDHA), the end-product of apatite cements, matches the inorganic phase of the bone and exhibits excellent biocompatibility in vivo [1]. However,  in vitro, CDHA uptakes calcium ions (Ca2+) from cell culture medium [2], causing detrimental effects on cell activity and function [3]. The aim of this work was to integrate CDHA into a microfluidic chip that provides continued culture medium supply, and to evaluate cell adhesion and proliferation as compared to standard well plates.METHODS:CDHA was integrated in a polydimethylsiloxane (PDMS)-glass microfluidic chip (CDHA-on-chip). PDMS was cured in a 3D-printed mould at 60°C for 2h. α-tricalcium phosphate was mixed with 2.5% w/v Na2HPO4(aq) (liquid-to-powder of 0.65 ml/g) and the CPC was cast within a PDMS pocket. The CPC was immersed in an aqueous solution at 37°C for 10 days to ensure full transformation to CDHA. Through plasma treatment, a glass slide was bonded to the PDMS holding the CDHA, thus forming a 0.5mm channel above the CDHA. CDHA samples were pre-incubated for 24h in minimum essential media (MEM) supplemented with 10% FBS and 1% penicillin-streptomycin (sMEM). Pre-osteoblasts (MC3T3-E1) were seeded at 50,000 cells/cm2 and after a cell adhesion period of 2h, flow was applied for 72h through the chip at different rates: 2, 8 and 14 μl/min. A static (0 μl/min) chip condition was included, where sMEM was manually replaced every 24h. CDHA discs (⌀=6mm, h=2mm) placed in a 96-well plate were used as a standard static control (200 μl sMEM replaced every 24h). At 6h and 72h, the cells were stained with a calcein, propidium iodide and Hoechst triple-stain to assess their adhesion and proliferation, respectively. In a separate experiment, sMEM was flown through the chips for 24h at the aforementioned flow rates, and Ca2+ concentration was quantified via inductively coupled plasma-optical emission spectroscopy (ICP-OES). As control, sMEM in contact with CDHA discs for 24h was evaluated.RESULTS:A larger number of cells adhered on the CDHA-on-chip under flow as opposed to both static CDHA-on-chip and CDHA disc in a well plate. Differences in cell adhesion between the flow conditions were negligible. Cell proliferation at 72h was significantly increased under flow compared to CDHA disc samples (Fig.1A). Static CDHA-on-chip showed almost no viable cells. 2 and 8 μl/min flow conditions showed the greatest cell counts, followed by the 14 μl/min flow condition. At higher flow rates, Ca2+ concentrations were closer to in fresh medium (Fig.1B)DISCUSSION & CONCLUSIONS:The static CDHA-on-chip and disc samples displayed a low degree of cell adhesion and proliferation, which seemed to indicate that ionic exchange led to detrimental cell behaviour. Cells displayed the greatest degree of adhesion and proliferation at a flow rate of 2 and 8 μl/min, probably due to more optimal Ca2+ concentrations. At 14 μl/min, the degree of cell adhesion and proliferation decreased, which could be ascribed to adverse effects of shear stress.
  •  
3.
  • Bojan, Alicja J., 1980, et al. (author)
  • A new bone adhesive candidate- does it work in human bone? An ex-vivo preclinical evaluation in fresh human osteoporotic femoral head bone
  • 2022
  • In: Injury-International Journal of the Care of the Injured. - : Elsevier BV. - 0020-1383 .- 1879-0267. ; 53:6, s. 1858-1866
  • Journal article (peer-reviewed)abstract
    • Introduction: The fixation of small intraarticular bone fragments is clinically challenging and an obvious first orthopaedic indication for an effective bone adhesive. In the present study the feasibility of bonding freshly harvested human trabecular bone with OsStic(R), a novel phosphoserine modified cement, was evaluated using a bone cylinder model pull-out test and compared with a commercial fibrin tissue adhesive. Methods: Femoral heads (n=13) were collected from hip fracture patients undergoing arthroplasty and stored refrigerated overnight in saline medium prior to testing. Cylindrical bone cores with a pre-inserted bone screw, were prepared using a coring tool. Each core was removed and glued back in place with either the bone adhesive (alpha-tricalcium phosphate, phosphoserine and 20% trisodium citrate solution) or the fibrin glue. All glued bones were stored in bone medium at 37 degrees C. Tensile loading, using a universal testing machine (5 kN load cell), was applied to each core/head. For the bone adhesive, bone cores were tested at 2 (n=13) and 24 (n=11) hours. For the fibrin tissue adhesive control group (n=9), bone cores were tested exclusively at 2 hours. The femoral bone quality was evaluated with micro-CT. Results: The ultimate pull-out load for the bone adhesive at 2 hours ranged from 36 to 171 N (mean 94 N, SD 42 N). At 24 hours the pull-out strength was similar, 47 to 198 N (mean 123 N, SD 43 N). The adhesive failure usually occurred through the adhesive layer, however in two samples, at 167 N and 198 N the screw pulled out of the bone core. The fibrin tissue adhesive group reached a peak force of 8 N maximally at 2 hours (range 2.8-8 N, mean 5.4 N, SD 1.6 N). The mean BV/TV for femoral heads was 0.15 and indicates poor bone quality. Conclusion: The bone adhesive successfully glued wet and fatty tissue of osteoporotic human bone cores. The mean ultimate pull-out force of 123 N at 24 hours corresponds to similar to 300 kPa shear stress acting on the bone core. These first ex-vivo results in human bone are a promising step toward potential clinical application in osteochondral fragment fixation. (C) 2022 The Authors. Published by Elsevier Ltd.
  •  
4.
  • Procter, Philip, et al. (author)
  • Gluing Living Bone Using a Biomimetic Bioadhesive : From Initial Cut to Final Healing
  • 2021
  • In: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media S.A.. - 2296-4185. ; 9
  • Journal article (peer-reviewed)abstract
    • Osteoporotic fractures are a growing issue due to the increasing incidence of osteoporosis worldwide. High reoperation rates in osteoporotic fractures call for investigation into new methods in improving fixation of osteoporotic bones. In the present study, the strength of a recently developed bone bioadhesive, OsStictm, was evaluated in vivo using a novel bone core assay in a murine animal model at 0, 3, 7, 14, 28, and 42 days. Histology and micro-CT were obtained at all time points, and the mean peak pull-out force was assessed on days 0–28. The adhesive provided immediate fixation to the bone core. The mean peak bone core pull-out force gradually decreased from 6.09 N (σ 1.77 N) at day 0 to a minimum of 3.09 N (σ 1.08 N) at day 7, recovering to 6.37 N (σ 4.18 N) by day 28. The corresponding fibrin (Tisseel) control mean peak bone core pull-out characteristic was 0.27 N (σ 0.27 N) at day 0, with an abrupt increase from 0.37 N (σ 0.28) at day 3, 6.39 N (σ 5.09 N) at day 7, and continuing to increase to 11.34 N (σ 6.5 N) by day 28. The bone cores failed either through core pull-out or by the cancellous part of the core fracturing. Overall, the adhesive does not interrupt healing with pathological changes or rapid resorption. Initially, the adhesive bonded the bone core to the femur, and over time, the adhesive was replaced by a vascularised bone of equivalent quality and quantity to the original bone. At the 42 day time point, 70% of the adhesive in the cancellous compartment and 50% in the cortical compartment had been replaced. The adhesive outwith the bone shell was metabolized by cells that are only removing the material excess with no ectopic bone formation. It is concluded that the adhesive is not a physical and biochemical barrier as the bone heals through the adhesive and is replaced by a normal bone tissue. This adhesive composition meets many of the clinical unmet needs expressed in the literature, and may, after further preclinical assessments, have potential in the repair of bone and osteochondral fragments.
  •  
5.
  • Vrchovecka, Katerina, et al. (author)
  • Cytocompatibility and Bioactive Ion Release Profiles of Phosphoserine Bone Adhesive : Bridge from In Vitro to In Vivo
  • 2022
  • In: Biomedicines. - : MDPI. - 2227-9059. ; 10:4
  • Journal article (peer-reviewed)abstract
    • One major challenge when developing new biomaterials is translating in vitro testing to in vivo models. We have recently shown that a single formulation of a bone tissue adhesive, phosphoserine modified cement (PMC), is safe and resorbable in vivo. Herein, we screened many new adhesive formulations, for cytocompatibility and bioactive ion release, with three cell lines: MDPC23 odontoblasts, MC3T3 preosteoblasts, and L929 fibroblasts. Most formulations were cytocompatible by indirect contact testing (ISO 10993-12). Formulations with larger amounts of phosphoserine (>50%) had delayed setting times, greater ion release, and cytotoxicity in vitro. The trends in ion release from the adhesive that were cured for 24 h (standard for in vitro) were similar to release from the adhesives cured only for 5-10 min (standard for in vivo), suggesting that we may be able to predict the material behavior in vivo, using in vitro methods. Adhesives containing calcium phosphate and silicate were both cytocompatible for seven days in direct contact with cell monolayers, and ion release increased the alkaline phosphatase (ALP) activity in odontoblasts, but not pre-osteoblasts. This is the first study evaluating how PMC formulation affects osteogenic cell differentiation (ALP), cytocompatibility, and ion release, using in situ curing conditions similar to conditions in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view