SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Putze Antje) "

Sökning: WFRF:(Putze Antje)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Athron, Peter, et al. (författare)
  • A global fit of the MSSM with GAMBIT
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the seven-dimensional Minimal Super-symmetric Standard Model (MSSM7) with the new GAMBIT software framework, with all parameters defined at the weak scale. Our analysis significantly extends previous weak-scale, phenomenological MSSM fits, by adding more and newer experimental analyses, improving the accuracy and detail of theoretical predictions, including dominant uncertainties from the Standard Model, the Galactic dark matter halo and the quark content of the nucleon, and employing novel and highly-efficient statistical sampling methods to scan the parameter space. We find regions of the MSSM7 that exhibit co-annihilation of neutralinos with charginos, stops and sbottoms, as well as models that undergo resonant annihilation via both light and heavy Higgs funnels. We find high-likelihood models with light charginos, stops and sbottoms that have the potential to be within the future reach of the LHC. Large parts of our preferred parameter regions will also be accessible to the next generation of direct and indirect dark matter searches, making prospects for discovery in the near future rather good.
  •  
2.
  • Athron, Peter, et al. (författare)
  • GAMBIT : the global and modular beyond-the-standard-model inference tool
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present flrst GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.
  •  
3.
  • Athron, Peter, et al. (författare)
  • GAMBIT : the global and modular beyond-the-standard-model inference tool
  • 2018
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 78:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In Ref. (GAMBIT Collaboration: Athron et. al., Eur. Phys. J. C. arXiv: 1705.07908, 2017) we introduced the global-fitting framework GAMBIT. In this addendum, we describe a new minor version increment of this package. GAMBIT 1.1 includes full support for Mathematica backends, which we describe in some detail here. As an example, we backend SUSYHD (Vega and Villadoro, JHEP 07: 159, 2015), which calculates the mass of the Higgs boson in the MSSM from effective field theory. We also describe updated likelihoods in PrecisionBit and DarkBit, and updated decay data included in DecayBit.
  •  
4.
  • Athron, Peter, et al. (författare)
  • Global fits of GUT-scale SUSY models with GAMBIT
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the Constrained Minimal Supersymmetric Standard Model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of darkmatter in all threemodels, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.
  •  
5.
  • Athron, Peter, et al. (författare)
  • SpecBit, DecayBit and PrecisionBit : GAMBIT modules for computing mass spectra, particle decay rates and precision observables
  • 2018
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 78:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.
  •  
6.
  • Athron, Peter, et al. (författare)
  • Status of the scalar singlet dark matter model
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:8
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.
  •  
7.
  • Balázs, Csaba, et al. (författare)
  • ColliderBit : a GAMBIT module for the calculation of high-energy collider observables and likelihoods
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe ColliderBit, a new code for the calculation of high energy collider observables in theories of physics beyond the Standard Model (BSM). ColliderBit features a generic interface to BSM models, a unique parallelised Monte Carlo event generation scheme suitable for large-scale supercomputer applications, and a number of LHC analyses, covering a reasonable range of the BSM signatures currently sought by ATLAS and CMS. ColliderBit also calculates likelihoods for Higgs sector observables, and LEP searches for BSM particles. These features are provided by a combination of new code unique to ColliderBit, and interfaces to existing state-of-the-art public codes. ColliderBit is both an important part of the GAMBIT framework for BSM inference, and a standalone tool for efficiently applying collider constraints to theories of new physics.
  •  
8.
  • Bernlochner, Florian U., et al. (författare)
  • FlavBit : a GAMBIT module for computing flavour observables and likelihoods
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Flavour physics observables are excellent probes of new physics up to very high energy scales. Here we present FlavBit, the dedicated flavour physics module of the global-fitting package GAMBIT. FlavBit includes custom implementations of various likelihood routines for a wide range of flavour observables, including detailed uncertainties and correlations associated with LHCb measurements of rare, leptonic and semileptonic decays of B and D mesons, kaons and pions. It provides a generalised interface to external theory codes such as Superlso, allowing users to calculate flavour observables in and beyond the Standard Model, and then test them in detail against all relevant experimental data. We describe FlavBit and its constituent physics in some detail, then give examples from supersymmetry and effective field theory illustrating how it can be used both as a standalone library for flavour physics, and within GAMBIT.
  •  
9.
  • Bringmann, Torsten, et al. (författare)
  • DarkBit : a GAMBIT module for computing dark matter observables and likelihoods
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the StandardModel Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a con-sistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a standalone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit's advanced direct and indirect detection routines to a simple effective dark matter model.
  •  
10.
  • Coste, B., et al. (författare)
  • Constraining Galactic cosmic-ray parameters with Z <= 2 nuclei
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A88-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The secondary-to-primary B/C ratio is widely used for studying Galactic cosmic-ray propagation processes. The H-2/He-4 and He-3/He-4 ratios probe a different Z/A regime, which provides a test for the universality of propagation. Aims. We revisit the constraints on diffusion-model parameters set by the quartet (H-1, H-2, He-3, He-4), using the most recent data as well as updated formulae for the inelastic and production cross-sections. Methods. Our analysis relies on the USINE propagation package and a Markov Chain Monte Carlo technique to estimate the probability density functions of the parameters. Simulated data were also used to validate analysis strategies. Results. The fragmentation of CNO cosmic rays (resp. NeMgSiFe) on the interstellar medium during their propagation contributes to 20% (resp. 20%) of the H-2 and 15% (resp. 10%) of the He-3 flux at high energy. The C to Fe elements are also responsible for up to 10% of the He-4 flux measured at 1 GeV/n. The analysis of He-3/He-4 (and to a lesser extent H-2/He-4) data shows that the transport parameters are consistent with those from the B/C analysis: the diffusion model with delta similar to 0.7 (diffusion slope), V-c similar to 20 km s(-1) (galactic wind), V-a similar to 40 km s(-1) (reacceleration) is favoured, but the combination delta similar to 0.2, V-c similar to 0, and V-a similar to 80 km s(-1) is a close second. The confidence intervals on the parameters show that the constraints set by the quartet data can compete with those derived from the B/C data. These constraints are tighter when adding the He-3 (or H-2) flux measurements, and the tightest when the He flux is added as well. For the latter, the analysis of simulated and real data shows an increased sensitivity to biases. Using the secondary-to-primary ratio along with a loose prior on the source parameters is recommended to obtain the most robust constraints on the transport parameters. Conclusions. Light nuclei should be systematically considered in the analysis of transport parameters. They provide independent constraints that can compete with those obtained from the B/C analysis.
  •  
11.
  • Martinez, Gregory D., et al. (författare)
  • Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.
  •  
12.
  • Maurin, D., et al. (författare)
  • Systematic uncertainties on the cosmic-ray transport parameters Is it possible to reconcile B/C data with delta=1/3 or delta 1/2?
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 516, s. A67-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The B/C ratio is used in cosmic-ray physics to constrain the transport parameters. However, from the same set of data, the various published values show a puzzling large scatter of these parameters. Aims. We investigate the impact of using different inputs (gas density and hydrogen fraction in the Galactic disc, source spectral shape, low-energy dependence of the diffusion coefficient, and nuclear fragmentation cross-sections) on the best-fit values of the transport parameters. We quantify the systematics produced when varying these inputs, and compare them to statistical uncertainties. We discuss the consequences for the slope of the diffusion coefficient delta. Methods. The analysis relies on the propagation code USINE interfaced with the Minuit minimisation routines. Results. We find the typical systematic uncertainties to be greater than the statistical ones. The several published values of delta (from 0.3 to 0.8) can be recovered when varying the low-energy shape of the diffusion coefficient and the convective wind strength. Models including a convective wind are characterised by delta greater than or similar to 0.6, which cannot be reconciled with the expected theoretical values (1/3 and 1/2). However, from a statistical point of view (chi(2) analysis), models with both reacceleration and convection - hence large delta - are favoured. The next favoured models in line yield delta, which can be accommodated with 1/3 and 1/2, but require a strong upturn of the diffusion coefficient at low energy (and no convection). Conclusions. To date, using the best statistical tools, the transport parameter determination is still plagued by many unknowns at low energy (similar to GeV/n). To disentangle all these configurations, measurements of the B/C ratio at TeV/n energies and/or combination with other secondary-to-primary ratios is necessary.
  •  
13.
  • Putze, Antje, et al. (författare)
  • A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays II. Results for the diffusion model combining B/C and radioactive nuclei
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 516, s. A66-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Ongoing measurements of the cosmic radiation ( nuclear, electronic, and gamma-ray) are providing additional insight into cosmic-ray physics. A comprehensive picture of these data relies on an accurate determination of the transport and source parameters of propagation models. Aims. A Markov Chain Monte Carlo method is used to obtain these parameters in a diffusion model. By measuring the B/C ratio and radioactive cosmic-ray clocks, we calculate their probability density functions, placing special emphasis on the halo size L of the Galaxy and the local underdense bubble of size r(h). We also derive the mean, best-fit model parameters and 68% confidence level for the various parameters, and the envelopes of other quantities. Methods. The analysis relies on the USINE code for propagation and on a Markov Chain Monte Carlo technique previously developed by ourselves for the parameter determination. Results. The B/C analysis leads to a most probable diffusion slope delta = 0.86(-0.04)(+0.04) for diffusion, convection, and reacceleration, or delta = 0.234(-0.005)(+ 0.006) for diffusion and reacceleration. As found in previous studies, the B/C best-fit model favours the first configuration, hence pointing to a high value for delta. These results do not depend on L, and we provide simple functions to rescale the value of the transport parameters to any L. A combined fit on B/C and the isotopic ratios (Be-10/Be-9, Al-26/Al-27, Cl-36/Cl) leads to L = 8(-7)(+8) kpc and r(h) = 120(-20)(+20) pc for the best-fit model. This value for r(h) is consistent with direct measurements of the local interstallar medium. For the model with diffusion and reacceleration, L = 4(-1)(+1) kpc and r(h) = 3(-3)(+70) pc (consistent with zero). We vary delta, because its value is still disputed. For the model with Galactic winds, we find that between delta = 0.2 and 0.9, L varies from O(0) to O(2) if r(h) is forced to be 0, but it otherwise varies from O(0) to O(1) (with r(h) similar to 100 pc for all delta greater than or similar to 0.3). The results from the elemental ratios Be/B, Al/Mg, and Cl/Ar do not allow independent checks of this picture because these data are not precise enough. Conclusions. We showed the potential and usefulness of the Markov Chain Monte Carlo technique in the analysis of cosmic-ray measurements in diffusion models. The size of the diffusive halo depends crucially on the value of the diffusion slope delta, and also on the presence/absence of the local underdensity damping effect on radioactive nuclei. More precise data from ongoing experiments are expected to clarify this issue.
  •  
14.
  • Putze, Antje, et al. (författare)
  • p, He, and C to Fe cosmic-ray primary fluxes in diffusion models Source and transport signatures on fluxes and ratios
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 526, s. A101-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The source spectrum of cosmic rays is not well determined by diffusive shock acceleration models. The propagated fluxes of proton, helium, and heavier primary cosmic-ray species (up to Fe) are a means to indirectly access it. But how robust are the constraints, and how degenerate are the source and transport parameters? Aims. We check the compatibility of the primary fluxes with the transport parameters derived from the B/C analysis, but also ask whether they add further constraints. We study whether the spectral shapes of these fluxes and their ratios are mostly driven by source or propagation effects. We then derive the source parameters (slope, abundance, and low-energy shape). Methods. Simple analytical formulae are used to address the issue of degeneracies between source/transport parameters, and to understand the shape of the p/He and C/O to Fe/O data. The full analysis relies on the USINE propagation package, the MINUIT minimisation routines (chi(2) analysis) and a Markov Chain Monte Carlo (MCMC) technique. Results. Proton data are well described in the simplest model defined by a power-law source spectrum and plain diffusion. They can also be accommodated by models with, e.g., convection and/or reacceleration. There is no need for breaks in the source spectral indices below similar to 1 TeV/n. Fits to the primary fluxes alone do not provide physical constraints on the transport parameters. If we leave the source spectrum free, parametrised by the form dQ/dE = q beta(eta S)R(-alpha), and fix the diffusion coefficient K(R) = K(0)beta(eta T)R(delta) so as to reproduce the B/C ratio, the MCMC analysis constrains the source spectral index a to be in the range 2.2-2.5 for all primary species up to Fe, regardless of the value of the diffusion slope delta. The values of the parameter eta(S) describing the low-energy shape of the source spectrum are degenerate with the parameter eta(T) describing the low-energy shape of the diffusion coefficient: we find eta(S) - eta(T) approximate to 0 for p and He data, but eta(S) - eta(T) approximate to 1 for C to Fe primary species. This is consistent with the toy-model calculation in which the shape of the p/He and C/O to Fe/O data is reproduced if eta(S) - eta(T) approximate to 0-1 (no need for different slopes a). When plotted as a function of the kinetic energy per nucleon, the low-energy p/He ratio is determined mostly by the modulation effect, whereas primary/O ratios are mostly determined by their destruction rate. Conclusions. Models based on fitting B/C are compatible with primary fluxes. The different spectral indices for the propagated primary fluxes up to a few TeV/n can be naturally ascribed to transport effects only, implying universality of elemental source spectra.
  •  
15.
  • Putze, Antje, et al. (författare)
  • The Grenoble Analysis Toolkit (GreAT)-A statistical analysis framework
  • 2014
  • Ingår i: Physics of the Dark Universe. - : Elsevier BV. - 2212-6864. ; 5-6, s. 29-34
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of astroparticle physics is currently the focus of prolific scientific activity. In the last decade, this field has undergone significant developments thanks to several experimental results from CREAM, PAMELA, Fermi, and H.E.S.S. Moreover, the next generation of instruments, such as AMS-02 (launched on 16 May 2011) and CTA, will undoubtedly facilitate more sensitive and precise measurements of the cosmic-ray and gamma-ray fluxes. To fully exploit the wealth of high precision data generated by these experiments, robust and efficient statistical tools such as Markov Chain Monte Carlo algorithms or evolutionary algorithms, able to handle the complexity of joint parameter spaces and datasets, are necessary for a phenomenological interpretation. The Grenoble Analysis Toolkit (GreAT) is an user-friendly and modular object orientated framework in C++, which samples the user-defined parameter space with a pre- or user-defined algorithm. The functionality of GreAT is presented in the context of cosmic-ray physics, where the boron-to-carbon (B/C) ratio is used to constrain cosmic-ray propagation models.
  •  
16.
  • Wu, Juan, 1982-, et al. (författare)
  • Constraints on cosmic-ray propagation and acceleration models from recent data
  • 2011
  • Ingår i: Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011. - : Institute of High Energy Physics. ; , s. 228-231
  • Konferensbidrag (refereegranskat)abstract
    • We are studying the constraints obtained on transport and acceleration mechanisms of galactic cosmic rays by using statistical tools in combination with the propagation package GALPROP and recent PAMELA data. Using only PAMELA data allows us to avoid inconsistencies between data sets from different experiments, minimise uncertainties on solar modulation parameters, and have a complementary and precise data set on (anti-)matter as well as primary and secondary nuclei over 3 orders of magnitude in energy. This allows us to simultaneously place strong constraints on cosmic-ray propagation and acceleration models. We describe our methodology and present some preliminary results in this paper.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy