SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Quaranta Simone) "

Sökning: WFRF:(Quaranta Simone)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Casalinuovo, Silvia, et al. (författare)
  • AuNP-coated cotton as VOC sensor for disease detection from breath
  • 2023
  • Ingår i: Proceedings of SIE 2022. - Cham : Springer Nature Switzerland. - 9783031260667 - 9783031260650
  • Konferensbidrag (refereegranskat)abstract
    • The COVID-19 pandemic outbreak, declared in March 2020, has led to several behavioral changes in the general population, such as social distancing and mask usage among others. Furthermore, the sanitary emergency has stressed health system weaknesses in terms of disease prevention, diagnosis, and cure. Thus, smart technologies allowing for early and quick detection of diseases are called for. In this framework, the development of point-of-care devices can provide new solutions for sanitary emergencies management. This work focuses on the development of useful tools for early disease diagnosis based on nanomaterials on cotton substrates, to obtain a low-cost and easy-to-use detector of breath volatiles as disease markers. Specifically, we report encouraging experimental results concerning acetone detection through impedance measurements. Such findings can pave the way to the implementation of VOCs (Volatile Organic Compounds) sensors into smart and user friendly diagnostic devices.
  •  
2.
  • Casalinuovo, Silvia, et al. (författare)
  • Cotone funzionalizzato con nanoparticelle d'oro come promettente substrato flessibile ed ecologico per il rilevamento impedometrico di COV [Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection]
  • 2023
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Questo lavoro si concentra sulla possibile applicazione di nanoparticelle d'oro su tessuti di cotone flessibili come substrati sensibili all'acetone e all'etanolo mediante misurazioni di impedenza. Nello specifico, nanoparticelle d'oro (NP Au) funzionalizzate con citrato e polivinilpirrolidone (PVP) sono state sintetizzate utilizzando procedure verdi e consolidate e depositate su tessuto di cotone. Una caratterizzazione strutturale e morfologica completa è stata condotta utilizzando la spettroscopia UV-VIS e infrarossa a trasformata di Fourier (FT-IR), la microscopia a forza atomica (AFM) e la microscopia elettronica a scansione (SEM). Una caratterizzazione dielettrica dettagliata del substrato vuoto ha rivelato effetti di polarizzazione interfacciale legati sia alle NP Au che alla loro specifica funzionalizzazione superficiale. Ad esempio, rivestendo interamente il tessuto di cotone (ovvero creando una matrice più isolante), è stato riscontrato che il PVP aumenta la resistenza del campione, ovvero diminuisce l'interconnessione elettrica delle NP Au rispetto al campione funzionalizzato con citrato. Tuttavia, è stato osservato che la funzionalizzazione del citrato ha fornito una distribuzione uniforme delle NP Au, che ha ridotto la loro spaziatura e, quindi, facilitato il trasporto degli elettroni. Per quanto riguarda il rilevamento dei composti organici volatili (COV), le misurazioni della spettroscopia di impedenza elettrochimica (EIS) hanno mostrato che il legame idrogeno e la risultante impedenza di migrazione protonica sono fondamentali per distinguere l'etanolo dall'acetone. 
  •  
3.
  • Casalinuovo, Silvia, et al. (författare)
  • Enhancing breath analysis with a novel AuNP-coated cotton sensor
  • 2023
  • Ingår i: 2023 9TH INTERNATIONAL WORKSHOP ON ADVANCES IN SENSORS AND INTERFACES, IWASI. - : IEEE. - 9798350336948 - 9798350336955 ; , s. 241-245
  • Konferensbidrag (refereegranskat)abstract
    • Human health has always been a major concern for science. Over the years, health research has included different areas, ranging from specific therapies to patients lifestyle and social information: "patient-oriented" approaches have increasingly emerged as a crucial tool for health care systems, as clearly shown during the recent SARS-CoV-2 pandemic. In this context, the synergy between different scientific and technological fields, such as biology, chemistry, physics, and engineering, is increasingly considered an essential requirement. This work presents a low cost and easy-to-use sensor of volatile organic compounds (VOCs) in exhaled breath, with the purpose of serving as a rapid, non-invasive and versatile diagnostic tool in smart medicine applications. A "lockand-key" system relying on gold nanoparticles deposited on cotton fabric enables the detection of target molecules, whose adsorption produces variations in terms of electrical impedance. The system has been exposed to ethanol-based solutions in an experimental campaign to investigate the sensing capabilities at 1 Hz - 1 MHz frequency range. The results achieved demonstrate the feasibility in obtaining health-relevant VOCs detection based on impedance analysis.
  •  
4.
  • Casalinuovo, Silvia, et al. (författare)
  • Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection
  • 2023
  • Ingår i: Materials. - 1996-1944. ; 16:17, s. 5826-5826
  • Tidskriftsartikel (refereegranskat)abstract
    • This work focuses on the possible application of gold nanoparticles on flexible cotton fabric as acetone- and ethanol-sensitive substrates by means of impedance measurements. Specifically, citrate- and polyvinylpyrrolidone (PVP)-functionalized gold nanoparticles (Au NPs) were synthesized using green and well-established procedures and deposited on cotton fabric. A complete structural and morphological characterization was conducted using UV–VIS and Fourier transform infrared (FT–IR) spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). A detailed dielectric characterization of the blank substrate revealed interfacial polarization effects related to both Au NPs and their specific surface functionalization. For instance, by entirely coating the cotton fabric (i.e., by creating a more insulating matrix), PVP was found to increase the sample resistance, i.e., to decrease the electrical interconnection of Au NPs with respect to citrate functionalized sample. However, it was observed that citrate functionalization provided a uniform distribution of Au NPs, which reduced their spacing and, therefore, facilitated electron transport. Regarding the detection of volatile organic compounds (VOCs), electrochemical impedance spectroscopy (EIS) measurements showed that hydrogen bonding and the resulting proton migration impedance are instrumental in distinguishing ethanol and acetone. Such findings can pave the way for the development of VOC sensors integrated into personal protective equipment and wearable telemedicine devices. This approach may be crucial for early disease diagnosis based on nanomaterials to attain low-cost/low-end and easy-to-use detectors of breath volatiles as disease markers.
  •  
5.
  • Fraschetti, Elena, et al. (författare)
  • Characterization of Disposable Facemasks for COVID-19 Through Colorimetric Analysis
  • 2022
  • Ingår i: NanoInnovation 2021. - : Institute of Physics (IOP).
  • Konferensbidrag (refereegranskat)abstract
    • Many aspects of the world population's daily life have been recently changed by the events following the SARS-COV-2 pandemic outbreak. Among all the consequences, wearing face masks has become a common routine to protect from virus transmission risks. This work presents a simple colorimetric system able to detect the carbon dioxide (CO2) saturation inside a disposable face mask, which is useful to determine the level of wear and degradation and to visually provide indications on its disposal time. The experiments were carried out by wearing a FFP2 face mask externally treated with a phenolphthalein solution and including in its breathing zone a CO2 sensor. Changes in face mask color were recorded by a camera and analyzed with ImageJ. A strong correspondence was found between the high values of CO2 detected by the sensor and the analyzed data. The results are promising and suggest further efforts in developing easy-to-use colorimetric methods as a visual indicator of the life cycle of a disposable face mask.
  •  
6.
  • Reverté, Sara, et al. (författare)
  • National records of 3000 European bee and hoverfly species : A contribution to pollinator conservation
  • 2023
  • Ingår i: Insect Conservation and Diversity. - 1752-458X. ; 16:6, s. 758-775
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators play a crucial role in ecosystems globally, ensuring the seed production of most flowering plants. They are threatened by global changes and knowledge of their distribution at the national and continental levels is needed to implement efficient conservation actions, but this knowledge is still fragmented and/or difficult to access. As a step forward, we provide an updated list of around 3000 European bee and hoverfly species, reflecting their current distributional status at the national level (in the form of present, absent, regionally extinct, possibly extinct or non-native). This work was attainable by incorporating both published and unpublished data, as well as knowledge from a large set of taxonomists and ecologists in both groups. After providing the first National species lists for bees and hoverflies for many countries, we examine the current distributional patterns of these species and designate the countries with highest levels of species richness. We also show that many species are recorded in a single European country, highlighting the importance of articulating European and national conservation strategies. Finally, we discuss how the data provided here can be combined with future trait and Red List data to implement research that will further advance pollinator conservation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy