SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Quax Wim) "

Sökning: WFRF:(Quax Wim)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kupreishvili, Koba, et al. (författare)
  • Arterial Blood Pressure Induces Transient C4b-Binding Protein in Human Saphenous Vein Grafts
  • 2017
  • Ingår i: Annals of Vascular Surgery. - : Elsevier BV. - 0890-5096. ; 41, s. 259-264
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Complement is an important mediator in arterial blood pressure-induced vein graft failure. Previously, we noted activation of cell protective mechanisms in human saphenous veins too. Here we have analyzed whether C4b-binding protein (C4bp), an endogenous complement inhibitor, is present in the vein wall. Methods: Human saphenous vein segments obtained from patients undergoing coronary artery bypass grafting (n = 55) were perfused in vitro at arterial blood pressure with either autologous blood for 1, 2, 4, or 6 hr or with autologous blood supplemented with reactive oxygen species scavenger N-acetylcysteine. The segments were subsequently analyzed quantitatively for presence of C4bp and complement activation product C3d using immunohistochemistry. Results: Perfusion induced deposition of C3d and C4bp within the media of the vessel wall, which increased reproducibly and significantly over a period of 4 hr up to 3.8% for C3d and 81% for C4bp of the total vessel area. Remarkably after 6 hr of perfusion, the C3d-positive area decreased significantly to 1.3% and the C4bp-positive area to 19% of the total area of the vein. The areas positive for both C4bp and C3d were increased in the presence of N-acetylcysteine. Conclusions: Exposure to arterial blood pressure leads to a transient presence of C4bp in the vein wall. This may be part of a cell-protective mechanism to counteract arterial blood pressure-induced cellular stress and inflammation in grafted veins.
  •  
2.
  • Plaza Menacho, Ivan, et al. (författare)
  • RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor
  • 2005
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 65:5, s. 1729-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • The RET proto-oncogene encodes a receptor tyrosine kinase whose dysfunction plays a crucial role in the development of several neural crest disorders. Distinct activating RET mutations cause multiple endocrine neoplasia type 2A (MEN2A), type 2B (MEN2B), and familial medullary thyroid carcinoma (FMTC). Despite clear correlations between the mutations found in these cancer syndromes and their phenotypes, the molecular mechanisms connecting the mutated receptor to the different disease phenotypes are far from completely understood. Luciferase reporter assays in combination with immunoprecipitations, and Western and immunohistochemistry analyses were done in order to characterize the signaling properties of two FMTC-associated RET mutations, Y791F and S891A, respectively, both affecting the tyrosine kinase domain of the receptor. We show that these RET-FMTC mutants are monomeric receptors which are autophosphorylated and activated independently of glial cell line-derived neurotrophic factor. Moreover, we show that the dysfunctional signaling properties of these mutants, when compared with wild-type RET, involve constitutive activation of signal transducers and activators of transcription 3 (STAT3). Furthermore, we show that STAT3 activation is mediated by a signaling pathway involving Src, JAK1, and JAK2, differing from STAT3 activation promoted by RET(C634R) which was previously found to be independent of Src and JAKs. Three-dimensional modeling of the RET catalytic domain suggested that the structural changes promoted by the respective amino acids substitutions lead to a more accessible substrate and ATP-binding monomeric conformation. Finally, immunohistochemical analysis of FMTC tumor samples support the in vitro data, because nuclear localized, Y705-phosphorylated STAT3, as well as a high degree of RET expression at the plasma membrane was observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy