SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Quincey Duncan J.) "

Sökning: WFRF:(Quincey Duncan J.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Colson, Daniel W., et al. (författare)
  • Six Decades of Changes in Pool Characteristics on a Concentric-Patterned Raised Bog
  • 2023
  • Ingår i: Ecosystems. - 1432-9840 .- 1435-0629.
  • Tidskriftsartikel (refereegranskat)abstract
    • Raised bogs are wetland ecosystems which, under the right climatic conditions, feature patterns of pool hollows and hummock ridges. The relative cover and the spatial arrangement of pool and ridge microforms are thought to be influential on peatland atmosphere carbon gas fluxes and plant biodiversity. The mechanisms responsible for the formation and maintenance of pools, and the stability of these features in response to warming climates, remain topics of ongoing research. We employed historical aerial imagery, combined with a contemporary uncrewed aerial vehicle survey, to study 61 years of changes in pools at a patterned raised bog in central Sweden. We used a pool inheritance method to track individual pools between image acquisition dates throughout the time series. These data show a rapid loss of open-water pool area during the study period, primarily due to overgrowth of open-water pools by Sphagnum. We postulate that these changes are driven by ongoing climate warming that is accelerating Sphagnum colonisation. Open-water pool area declined by 26.8% during the study period, equivalent to a loss of 1001 m2 y−1 across the 150-hectare site. This is contradictory to an existing theory that states pools are highly stable, once formed, and can only convert to a terrestrial state through catastrophic drainage. The pool inheritance analysis shows that smaller pools are liable to become completely terrestrialised and expire. Our findings form part of a growing body of evidence for the loss of open-water habitats in peatlands across the boreal and elsewhere.
  •  
2.
  • Chambers, Joshua R., et al. (författare)
  • Correcting for Systematic Underestimation of Topographic Glacier Aerodynamic Roughness Values From Hintereisferner, Austria
  • 2021
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatially-distributed values of glacier aerodynamic roughness (z0) are vital for robust estimates of turbulent energy fluxes and ice and snow melt. Microtopographic data allow rapid estimates of z0 over discrete plot-scale areas, but are sensitive to data scale and resolution. Here, we use an extensive multi-scale dataset from Hintereisferner, Austria, to develop a correction factor to derive z0 values from coarse resolution (up to 30 m) topographic data that are more commonly available over larger areas. Resulting z0 estimates are within an order of magnitude of previously validated, plot-scale estimates and aerodynamic values. The method is developed and tested using plot-scale microtopography data generated by structure from motion photogrammetry combined with glacier-scale data acquired by a permanent in-situ terrestrial laser scanner. Finally, we demonstrate the application of the method to a regional-scale digital elevation model acquired by airborne laser scanning. Our workflow opens up the possibility of including spatio-temporal variations of z0 within glacier surface energy balance models without the need for extensive additional field data collection.
  •  
3.
  • Smith, Thomas, et al. (författare)
  • A scale-dependent model to represent changing aerodynamic roughness of ablating glacier ice based on repeat topographic surveys
  • 2020
  • Ingår i: Journal of Glaciology. - : Cambridge University Press (CUP). - 0022-1430 .- 1727-5652. ; 66:260, s. 950-964
  • Forskningsöversikt (refereegranskat)abstract
    • Turbulent fluxes make a substantial and growing contribution to the energy balance of ice surfaces globally, but are poorly constrained owing to challenges in estimating the aerodynamic roughness length (z0). Here, we used structure from motion (SfM) photogrammetry and terrestrial laser scanning (TLS) surveys to make plot-scale 2-D and 3-D microtopographic estimations of z0 and upscale these to map z0 across an ablating mountain glacier. At plot scales, we found spatial variability in z0 estimates of over two orders of magnitude with unpredictable z0 trajectories, even when classified into ice surface types. TLS-derived surface roughness exhibited strong relationships with plot-scale SfM z0 estimates. At the glacier scale, a consistent increase in z0 of ∼0.1 mm d-1 was observed. Space-for-time substitution based on time since surface ice was exposed by snow melt confirmed this gradual increase in z0 over 60 d. These measurements permit us to propose a scale-dependent temporal z0 evolution model where unpredictable variability at the plot scale gives way to more predictable changes of z0 at the glacier scale. This model provides a critical step towards deriving spatially and temporally distributed representations of z0 that are currently lacking in the parameterisation of distributed glacier surface energy balance models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy