SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rahman Milladur) "

Sökning: WFRF:(Rahman Milladur)

  • Resultat 1-50 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abdulla, Aree, et al. (författare)
  • Role of platelets in experimental acute pancreatitis.
  • 2011
  • Ingår i: British Journal of Surgery. - : Oxford University Press (OUP). - 1365-2168 .- 0007-1323. ; 98, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:: Platelets not only control thrombosis and haemostasis but may also regulate inflammatory processes. Acute pancreatitis (AP) is characterized by changes in both coagulation and proinflammatory activities. The role of platelets in AP is not yet known. METHODS:: AP was induced in C57BL/6 mice by repeated caerulein administration (50 µg/kg intraperitoneally). Mice received a platelet-depleting or control antibody before caerulein challenge. Neutrophil infiltration, myeloperoxidase (MPO) and macrophage inflammatory protein (MIP) 2 levels, acinar cell necrosis and haemorrhage in the pancreas, as well as serum amylase activity, were determined 24 h after caerulein injection. In an alternative model of pancreatitis, L-arginine (4 g/kg intraperitoneally) was given twice with an interval of 1 h and tissue samples were taken after 72 h [Correction added after online publication 29 September 2010: in the preceding sentence, 4 mg/kg was corrected to 4 g/kg]. RESULTS:: Caerulein administration increased acinar cell necrosis, neutrophil infiltration, focal haemorrhage and serum amylase levels. Platelet depletion reduced acinar cell necrosis, haemorrhage and serum amylase levels in AP. Depletion of platelets decreased caerulein-induced MPO levels and neutrophil recruitment in the pancreas. Platelet depletion abolished caerulein-induced MIP-2 generation in the pancreas and circulation. The effects of platelet depletion on necrosis, neutrophils and MPO levels were confirmed in L-arginine-induced pancreatitis. CONCLUSION:: Platelets play a crucial role in AP by regulating neutrophil infiltration, most likely mediated by MIP-2 production in the pancreas. Copyright © 2010 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
  •  
3.
  • Algaber, Anwar, et al. (författare)
  • MicroRNA-340-5p inhibits colon cancer cell migration via targeting of RhoA
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 16934-16934
  • Tidskriftsartikel (refereegranskat)abstract
    • Colon cancer is the third most common cancer and a significant cause of cancer-related deaths worldwide. Metastasis is the most insidious aspect of cancer progression. Convincing data suggest that microRNAs (miRs) play a key function in colon cancer biology. We examined the role of miR-340-5p in regulating RhoA expression as well as cell migration and invasion in colon cancer cells. Levels of miR-340-5p and RhoA mRNA varied inversely in serum-free and serum-grown HT-29 and AZ-97 colon cancer cells. It was found transfection with miR-340-5p not only decreased expression of RhoA mRNA and protein levels in HT-29 cells but also reduced colon cancer cell migration and invasion. Bioinformatics analysis predicted one putative binding sites at the 3'-UTR of RhoA mRNA. Targeting this binding site with a specific blocker reversed mimic miR-340-5p-induced inhibition of RhoA activation and colon cancer cell migration and invasion. These novel results suggest that miR-340-5p is an important regulator of colon cancer cell motility via targeting of RhoA and further experiments are warranted to evaluate the role of miR-340-5p in colon cancer metastasis.
  •  
4.
  • Algaber, Anwar, et al. (författare)
  • Targeting FHL2-E-cadherin axis by miR-340-5p attenuates colon cancer cell migration and invasion
  • 2021
  • Ingår i: Oncology Letters. - : Spandidos Publications. - 1792-1074 .- 1792-1082. ; 22:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Convincing data has suggested that four and a half LIM domain 2 protein (FHL2) serves a key function in cancer cell metastasis and that microRNA (miR)-340-5p can regulate cancer cell migration. The current study hypothesized that targeting FHL2 expression by miR-340-5p in colon cancer may attenuate colon cancer cell migration and invasion. FHL2 expression was therefore assessed in colon cancer microarray datasets using Qlucore omics explorer as well as in HT-29 and AZ-97 colon cancer cell lines via reverse transcription-quantitative PCR (RT-qPCR). Colon cancer cell migration and invasion were evaluated in the presence of miR-340-5p mimic, mimic control or mimic with a target site blocker. Confocal microscopy and RT-qPCR were subsequently performed to assess FHL2, E-cadherin (E-cad) protein and mRNA expression in colon cancer cells. Microarray dataset analysis revealed that FHL2 expression was lower in primary colon cancer cells compared with normal colonic mucosa. It was revealed that the expression of miR-340-5p and FHL2 were inversely related in serum-grown and low-serum conditions in HT-29 and AZ-97 cells. Short-time serum exposure to low-serum grown cells induced FHL2 expression. Transfection of HT-29 cells with miR-340-5p mimic not only decreased serum-induced expression of FHL2 but also decreased cancer cell migration and invasion. Bioinformatics analysis revealed that FHL2 mRNA had one putative binding site for miR-340-5p at the 3-untranslated region. Blocking of the target site using a specific blocker reverted miR-340-5p mimic-induced inhibition of FHL2 expression and cancer cell migration and invasion. Confocal microscopy confirmed that the reduction of FHL2 expression by miR-340-5p mimic also reversed serum-induced E-cad disruption and that the target site blocker abrogated the effect of miR-340-5p. The current results suggested that miR-340-5p could be used to antagonize colon cancer cell metastasis by targeting the FHL2-E-cad axis.
  •  
5.
  • Awla, Darbaz, et al. (författare)
  • Rho-kinase signalling regulates trypsinogen activation and tissue damage in severe acute pancreatitis.
  • 2011
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 162, s. 648-658
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Severe acute pancreatitis (SAP) is characterized by trypsinogen activation, infiltration of leucocytes and tissue necrosis but the intracellular signalling mechanisms regulating organ injury in the pancreas remain elusive. Rho-kinase is a potent regulator of specific cellular processes effecting several pro-inflammatory activities. Herein, we examined the role of Rho-kinase signalling in acute pancreatitis. Experimental approach: Pancreatitis was induced by infusion of taurocholate into the pancreatic duct in C57BL/6 mice. Animals were treated with a Rho-kinase inhibitor Y-27632 (0.5-5 mg kg(-1) ) before induction of pancreatitis. Key results: Taurocholate infusion caused a clear-cut increase in serum amylase, pancreatic neutrophil infiltration, acinar cell necrosis and oedema formation in the pancreas. Levels of pancreatic myeloperoxidase (MPO), macrophage inflammatory protein-2 (MIP-2), trypsinogen activation peptide (TAP) and lung MPO were significantly increased, indicating local and systemic disease. Inhibition of Rho-kinase activity dose-dependently protected against pancreatitis. For example, 5 mg kg(-1) Y-27632 reduced acinar cell necrosis, leucocyte infiltration and pancreatic oedema by 90%, 89% and 58% respectively as well as tissue levels of MPO by 75% and MIP-2 by 84%. Moreover, Rho-kinase inhibition decreased lung MPO by 75% and serum amylase by 83%. Pancreatitis-induced TAP levels were reduced by 61% in Y-27632-treated mice. Inhibition of Rho-kinase abolished secretagogue-induced activation of trypsinogen in pancreatic acinar cells in vitro. Conclusions and Implications: Our novel data suggest that Rho-kinase signalling plays an important role in acute pancreatitis by regulating trypsinogen activation and subsequent CXC chemokine formation, neutrophil infiltration and tissue injury. Thus, these results indicate that Rho-kinase may constitute a novel target in the management of SAP.
  •  
6.
  • Burri, Stina, et al. (författare)
  • Processed meat products with added plant antioxidants affect the microbiota and immune response in C57BL/6JRj mice with cyclically induced chronic inflammation
  • 2021
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier BV. - 1950-6007 .- 0753-3322. ; 135
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies have found that there is a correlation between red and processed meat consumption and an increased risk of colorectal cancer. There are numerous existing hypotheses on what underlying mechanisms are causative to this correlation, but the results remain unclear. A common hypothesis is that lipid oxidation, which occurs in endogenous lipids and phospholipids in consumed food, are catalyzed by the heme iron in meat. In this study, five pre-selected plant antioxidant preparations (sea buckthorn leaves and sprouts, summer savory leaves, olive polyphenols, onion skin and lyophilized black currant leaves) were added to a meatball type prone to oxidize (pork meat, 20 % fat, 2% salt, deep-fried and after 2 weeks of storage). Pro-inflammatory markers, neutrophil infiltration and microbiota composition were studied after four months in a chronic inflammation model in C57BL6/J female mice. We found that the bacterial diversity index was affected, as well as initial immunological reactions.
  •  
7.
  • Chew, Michelle, et al. (författare)
  • Soluble CD40L (CD154) is increased in patients with shock.
  • 2010
  • Ingår i: Inflammation Research. - : Springer Science and Business Media LLC. - 1420-908X .- 1023-3830. ; 59, s. 979-982
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Recent data suggest that soluble CD40L (sCD40L) plays an important role in murine sepsis. The aim of the present study was to determine plasma levels of CD40L in critically ill patients with systemic inflammatory response syndrome (SIRS) and shock, with and without sepsis. DESIGN: A prospective observational one-centre cohort study in a mixed-bed ICU of an university hospital. Fifty-three consecutive patients fulfilling the criteria for SIRS with shock as well as seven age-matched controls were included. ELISA was used to determine sCD40L in the plasma. RESULTS: The level of sCD40L in plasma from healthy controls was 0.18 +/- 0.03 ng/ml. It was found that sCD40L levels were significantly higher in patients with non-septic shock (0.72 +/- 0.18 ng/ml) and septic shock (0.50 +/- 0.1 ng/ml). However, the levels of sCD40L were not different between these two groups of patients, or in those with low and high APACHE scores. CONCLUSION: Our data show that sCD40L is increased in patients with shock from septic and non-septic etiologies. However, further studies are needed to delineate the functional significance of sCD40L in the clinical outcome in shock patients.
  •  
8.
  • Ding, Zhiyi, et al. (författare)
  • Actin-related protein 2/3 complex regulates neutrophil extracellular trap expulsion and lung damage in abdominal sepsis
  • 2022
  • Ingår i: American Journal of Physiology - Lung Cellular and Molecular Physiology. - 1040-0605. ; 322:5, s. 662-672
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil extracellular trap (NET) formation is a key feature in sepsis. The aim of the present study was to examine the role of the actin cytoskeleton in regulating the expulsion of NETs. Actin-related protein 2/3 (Arp 2/3) complex is an important regulator of F-actin polymerization. Coincubation with CK666, a specific Arp 2/3 inhibitor, decreased 12-phorbol 13-myristate acetate-induced NET formation in vitro. CK666 not only abolished F-actin polymerization but also caused intracellular retention of NETs. Inhibition of Arp 2/3 reduced NET formation on circulating neutrophils and in the bronchoalveolar space in mice undergoing cecal ligation and puncture (CLP). Notably, treatment with CK666 attenuated CLP-induced neutrophil recruitment, edema formation, and tissue damage in the lungs. Moreover, Arp 2/3 inhibition decreased levels of C-X-C motif chemokine ligand 1 (CXCL-1) and interleukin-6 in the lung and plasma of septic animals. Taken together, this study shows that expulsion of NETs is regulated by the actin cytoskeleton and that inhibition of Arp 2/3-dependent F-actin polymerization not only decreases NET formation but also protects against pathological inflammation and tissue damage in septic lung injury. Thus, we suggest that targeting NET release is a novel and useful way to ameliorate lung damage in abdominal sepsis.
  •  
9.
  • Ding, Zhiyi, et al. (författare)
  • Targeting s100a9 reduces neutrophil recruitment, inflammation and lung damage in abdominal sepsis
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:23
  • Tidskriftsartikel (refereegranskat)abstract
    • S100A9, a pro-inflammatory alarmin, is up-regulated in inflamed tissues. However, the role of S100A9 in regulating neutrophil activation, inflammation and lung damage in sepsis is not known. Herein, we hypothesized that blocking S100A9 function may attenuate neutrophil recruitment in septic lung injury. Male C57BL/6 mice were pretreated with the S100A9 inhibitor ABR-238901 (10 mg/kg), prior to cercal ligation and puncture (CLP). Bronchoalveolar lavage fluid (BALF) and lung tissue were harvested for analysis of neutrophil infiltration as well as edema and CXC chemokine production. Blood was collected for analysis of membrane-activated complex-1 (Mac-1) expression on neutrophils as well as CXC chemokines and IL-6 in plasma. Induction of CLP mark-edly increased plasma levels of S100A9. ABR-238901 decreased CLP-induced neutrophil infiltration and edema formation in the lung. In addition, inhibition of S100A9 decreased the CLP-induced up-regulation of Mac-1 on neutrophils. Administration of ABR-238901 also inhibited the CLP-induced increase of CXCL-1, CXCL-2 and IL-6 in plasma and lungs. Our results suggest that S100A9 promotes neutrophil activation and pulmonary accumulation in sepsis. Targeting S100A9 function decreased formation of CXC chemokines in circulation and lungs and attenuated sepsis-induced lung damage. These novel findings suggest that S1000A9 plays an important pro-inflammatory role in sepsis and could be a useful target to protect against the excessive inflammation and lung damage associated with the disease.
  •  
10.
  • Du, Feifei, et al. (författare)
  • E3 Ubiquitin Ligase Midline 1 Regulates Endothelial Cell ICAM-1 Expression and Neutrophil Adhesion in Abdominal Sepsis
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Septic lung damage is associated with endothelial cell and neutrophil activation. This study examines the role of the E3 ubiquitin ligase midline 1 (Mid1) in abdominal sepsis. Mid1 expression was increased in endothelial cells derived from post-capillary venules in septic mice and TNF-α challenge increased Mid1 levels in endothelial cells in vitro. The siRNA-mediated knockdown of Mid1 decreased TNF-α-induced upregulation of ICAM-1 and neutrophil adhesion to endothelial cells. Moreover, Mid1 silencing reduced leukocyte adhesion in post-capillary venules in septic lungs in vivo. The silencing of Mid1 not only decreased Mid1 expression but also attenuated expression of ICAM-1 in lungs from septic mice. Lastly, TNF-α stimulation decreased PP2Ac levels in endothelial cells in vitro, which was reversed in endothelial cells pretreated with siRNA directed against Mid1. Thus, our novel data show that Mid1 is an important regulator of ICAM-1 expression and neutrophil adhesion in vitro and septic lung injury in vivo. A possible target of Mid1 is PP2Ac in endothelial cells. Targeting the Mid1-PP2Ac axis may be a useful way to reduce pathological lung inflammation in abdominal sepsis.
  •  
11.
  • Du, Feifei, et al. (författare)
  • S100A9 induces reactive oxygen species-dependent formation of neutrophil extracellular traps in abdominal sepsis
  • 2022
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 1090-2422 .- 0014-4827. ; 421:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent evidence suggests that targeting S100A9 reduces pathological inflammation in abdominal sepsis. Herein, we investigated the role of S100A9 in neutrophil extracellular trap (NET) formation in septic lung damage. NETs were detected by electron microscopy in the lung and by confocal microscopy in vitro. Stimulation of isolated mouse bone marrow-derived neutrophils with S100A9 triggered formation of NETs. Blocking TLR4 and RAGE reduced S100A9-induced generation of NETs and DNA-histone complexes. Moreover, S100A9 challenge increased generation of reactive oxygen species (ROS) in bone marrow neutrophils. Co-incubation with the NADPH oxidase inhibitor not only decreased ROS formation but also attenuated induction of DNA-histone complexes in S100A9-stimulated neutrophils. Abdominal sepsis was induced by cecal ligation and puncture (CLP) in male C57BL/6 mice. Administration of the S100A9 inhibitor ABR-238901 decreased CLP-induced formation of NETs in lungs and DNA-histone complexes in plasma. In addition, transmission electron microscopy revealed that S100A9 was abundantly expressed on NETs in the lungs in CLP mice. By use of intravital microscopy, we found that local injection of NETs increased leukocyte adhesion and migration in the mouse cremaster muscle microvasculature. Notably, treatment with ABR-238901 attenuated NET-induced leukocyte adhesion and extravasation in the cremaster muscle, suggesting that NET-associated S100A9 promotes leukocyte recruitment in vivo. Taken together, these novel findings suggest that S100A9 triggers ROS-dependent formation of NETs via TLR4 and RAGE signaling in neutrophils. Moreover, S100A9 regulates both formation of NETs and NET-induced leukocyte recruitment in vivo. Thus, targeting S100A9 might be useful to ameliorate lung damage in abdominal sepsis.
  •  
12.
  • Hasan, Zirak, et al. (författare)
  • Geranylgeranyl transferase regulates CXC chemokine formation in alveolar macrophages and neutrophil recruitment in septic lung injury
  • 2013
  • Ingår i: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 304:4, s. 221-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Hasan Z, Rahman M, Palani K, Syk I, Jeppsson B, Thorlacius H. Geranylgeranyl transferase regulates CXC chemokine formation in alveolar macrophages and neutrophil recruitment in septic lung injury. Am J Physiol Lung Cell Mol Physiol 304: L221-L229, 2013. First published December 14, 2012; doi:10.1152/ajplung.00199.2012.-Overwhelming accumulation of neutrophils is a significant component in septic lung damage, although the signaling mechanisms behind neutrophil infiltration in the lung remain elusive. In the present study, we hypothesized that geranylgeranylation might regulate the inflammatory response in abdominal sepsis. Male C57BL/6 mice received the geranylgeranyl transferase inhibitor, GGTI-2133, before cecal ligation and puncture (CLP). Bronchoalveolar lavage fluid and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 on neutrophils and CD40L on platelets. Gene expression of CXC chemokines, tumor necrosis factor-alpha (TNF-alpha), and CCL2 chemokine was determined by quantitative RT-PCR in isolated alveolar macrophages. Administration of GGTI-2133 markedly decreased CLP-induced infiltration of neutrophils, edema, and tissue injury in the lung. CLP triggered clear-cut upregulation of Mac-1 on neutrophils. Inhibition of geranylgeranyl transferase reduced CLP-evoked upregulation of Mac-1 on neutrophils in vivo but had no effect on chemokine-induced expression of Mac-1 on isolated neutrophils in vitro. Notably, GGTI-2133 abolished CLP-induced formation of CXC chemokines, TNF-alpha, and CCL2 in alveolar macrophages in the lung. Geranylgeranyl transferase inhibition had no effect on sepsis-induced platelet shedding of CD40L. In addition, inhibition of geranylgeranyl transferase markedly decreased CXC chemokine-triggered neutrophil chemotaxis in vitro. Taken together, our findings suggest that geranylgeranyl transferase is an important regulator of CXC chemokine production and neutrophil recruitment in the lung. We conclude that inhibition of geranylgeranyl transferase might be a potent way to attenuate acute lung injury in abdominal sepsis.
  •  
13.
  • Hasan, Zirak, et al. (författare)
  • Rho-kinase regulates induction of T-cell immune dysfunction in abdominal sepsis.
  • 2013
  • Ingår i: Infection and Immunity. - 1098-5522. ; 81:7, s. 2499-2506
  • Tidskriftsartikel (refereegranskat)abstract
    • T-cell dysfunction increases susceptibility to infections in patients with sepsis. In the present study, we hypothesized that Rho-kinase signaling might regulate induction of T-cell dysfunction in abdominal sepsis. Male C57BL/6 mice were treated with the specific Rho-kinase inhibitor Y-27632 (5 mg/kg) prior to cecal ligation and puncture (CLP). Spleen CD4 T-cell apoptosis, proliferation and regulatory T-cells (CD4(+)CD25(+)Foxp3(+)) were determined by flow cytometry. Formation of IFN-γ and IL-4 in the spleen and plasma levels of HMBG1 and IL-6 were quantified by use of ELISA. It was found that CLP evoked apoptosis and decreased proliferation in splenic CD4 T-cells. Inhibition of Rho-kinase activity decreased apoptosis and enhanced proliferation of CD4 T-cells in septic animals. In addition, CLP-evoked induction of regulatory T-cells in the spleen was abolished by Rho-kinase inhibition. CLP reduced the levels of IFN-γ and IL-4 in the spleen. Pretreatment with Y-27632 inhibited the sepsis-induced decrease in IFN-γ but not IL-4 formation in the spleen. CLP increased plasma levels of HMGB1 by 20-fold and IL-6 by 19-fold. Inhibition of Rho-kinase decreased this CLP-evoked increase of HMGB1, IL-6 and IL-17 levels in the plasma by more than 60%, suggesting that Rho-kinase regulates systemic inflammation in sepsis. Moreover, we observed that pretreatment with Y-27632 abolished CLP-induced bacteremia. Together, our novel findings indicate that Rho-kinase is a powerful regulator of T-cell immune dysfunction in abdominal sepsis. Thus, targeting Rho-kinase signaling might be a useful strategy to improve T-cell immunity in patients with abdominal sepsis.
  •  
14.
  • Hasan, Zirak, et al. (författare)
  • Rho-Kinase Signaling Regulates Pulmonary Infiltration of Neutrophils in Abdominal Sepsis via Attenuation of CXC Chemokine Formation and Mac-1 Expression on Neutrophils.
  • 2012
  • Ingår i: Shock. - 1540-0514. ; 37:3, s. 282-288
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Excessive neutrophil infiltration is a major component in septic lung injury, although the signaling mechanisms behind pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. Herein, we hypothesized that Rho-kinase activity may play a significant role in pulmonary neutrophil recruitment and tissue damage in abdominal sepsis. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 (0.5 or 5 mg/kg) before cecal ligation and puncture. Bronchoalveolar lavage fluid and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 on neutrophils and CD40L on platelets as well as soluble CD40L and metalloproteinase-9 (MMP-9) in plasma. CLP triggered significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP up-regulated Mac-1 expression on neutrophils, decreased CD40L on platelets and increased soluble CD40L and MMP-9 in the circulation. Interestingly, inhibition of Rho-kinase dose-dependently decreased CLP-induced neutrophil expression of Mac-1, formation of CXC chemokines and edema as well as neutrophil infiltration and tissue damage in the lung. Moreover, Rho-kinase inhibition significantly reduced sepsis-provoked gene-expression of CXC chemokines in alveolar macrophages. In contrast, Rho-kinase inhibition had no effect on platelet shedding of CD40L or plasma levels of MMP-9 in septic mice. In conclusion, these data demonstrate that the Rho-kinase signaling pathway plays a key role in regulating pulmonary infiltration of neutrophils and tissue injury via regulation of CXC chemokine production in the lung and Mac-1 expression on neutrophils in abdominal sepsis.
  •  
15.
  • Hasan, Zirak, et al. (författare)
  • Targeting CD44 Expressed on Neutrophils Inhibits Lung Damage in Abdominal Sepsis.
  • 2011
  • Ingår i: Shock. - 1540-0514. ; 35, s. 567-572
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil infiltration is an insidious feature in septic lung injury, although the specific adhesive mechanisms regulating pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. The aim of this present study was to define the role of CD44 in sepsis-induced neutrophil infiltration and lung damage. Mice were treated with a monoclonal antibody against CD44 before cecal ligation and puncture (CLP) induction. Edema formation, bronchoalveolar accumulation of neutrophils, myeloperoxidase activity, and macrophage inflammatory protein-2 (MIP-2) levels in the lung were determined after CLP. Expression of Mac-1 and CD44 on neutrophils was quantified by using flow cytometry. In separate experiments, fluorescent-labeled neutrophils co-incubated with an anti-CD44 antibody were adoptively transferred to CLP mice. CLP triggered clear-cut lung damage characterized by edema formation, neutrophil infiltration, and increased levels of MIP-2 in the lung. Notably, immunoneutralization of CD44 reduced CLP-induced pulmonary accumulation of neutrophils. In addition, functional inhibition of CD44 decreased CLP-induced lung damage and edema. However, formation of MIP-2 in the lung and neutrophil expression of Mac-1 were intact in septic mice pretreated with the anti-CD44 antibody. Adoptive transfer experiments revealed that neutrophil rather than lung CD44 mediates neutrophil accumulation in septic lung injury. Moreover, administration of hyaluronidase had no effect on CLP-induced neutrophil recruitment and tissue damage in the lung. Our data demonstrate that CD44 contributes to pulmonary infiltration of neutrophils and lung damage associated with abdominal sepsis. Thus, these novel findings suggest that CD44 may serve as a target to protect against lung injury in polymicrobial sepsis.
  •  
16.
  • Hawez, Avin, et al. (författare)
  • c-Abl kinase regulates neutrophil extracellular trap formation and lung injury in abdominal sepsis
  • 2022
  • Ingår i: Laboratory Investigation. - : Elsevier BV. - 0023-6837. ; 102:3, s. 263-271
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis is associated with exaggerated neutrophil responses although mechanisms remain elusive. The aim of this study was to investigate the role of c-Abelson (c-Abl) kinase in neutrophil extracellular trap (NET) formation and inflammation in septic lung injury. Abdominal sepsis was induced by cecal ligation and puncture (CLP). NETs were detected by electron microscopy in the lung and by confocal microscopy in vitro. Plasma levels of DNA-histone complexes, interleukin-6 (IL-6) and CXC chemokines were quantified. CLP-induced enhanced phosphorylation of c-Abl kinase in circulating neutrophils. Administration of the c-Abl kinase inhibitor GZD824 not only abolished activation of c-Abl kinase in neutrophils but also reduced NET formation in the lung and plasma levels of DNA-histone complexes in CLP mice. Moreover, inhibition of c-Abl kinase decreased CLP-induced lung edema and injury. Administration of GDZ824 reduced CLP-induced increases in the number of alveolar neutrophils. Inhibition of c-Abl kinase also markedly attenuated levels of CXC chemokines in the lung and plasma as well as IL-6 levels in the plasma of septic animals. Taken together, this study demonstrates that c-Abl kinase is a potent regulator of NET formation and we conclude that c-Abl kinase might be a useful target to ameliorate lung damage in abdominal sepsis.
  •  
17.
  • Hawez, Avin, et al. (författare)
  • MiR-155 regulates neutrophil extracellular trap formation and lung injury in abdominal sepsis
  • 2022
  • Ingår i: Journal of Leukocyte Biology. - 1938-3673. ; 111:2, s. 391-400
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil extracellular traps (NETs)-mediated tissue damage is a hallmark in abdominal sepsis. Under certain conditions, microRNAs (miRs) can regulate protein expression and cellular functions. The aim of this study was to investigate the role of miR-155 in sepsis-induced NET formation, lung inflammation, and tissue damage. Abdominal sepsis was induced in wild-type (WT) C57BL/6 and miR-155 gene-deficient mice by cecal ligation and puncture (CLP). The amount of DNA-histone complex formation as well as myeloperoxidase (MPO) and citrullinated histone 3 in neutrophils isolated from bone marrow were examined by ELISA and flow cytometry. NETs were detected by electron microscopy in the septic lung. Levels of PAD4 and citrullinated histone 3 were determined by Western blot in the blood neutrophils. Lung levels of MPO, CXC chemokines, and plasma levels of DNA-histone complexes and CXC chemokines were quantified. In vitro studies revealed that neutrophils from miR-155 gene-deficient mice had less NETs forming ability than WT neutrophils. In the miR-155 gene-deficient mice, CLP yielded much less NETs in the lung tissue compared with WT control. CLP-induced PAD4 levels, histone 3 citrullination, edema, MPO activity, and neutrophil recruitment in the lung were markedly reduced in the mice lacking miR-155. Furthermore, tissue and plasma levels of CXCL1 and CXCL2 were significantly lower in the miR-155 gene-deficient mice compared with WT after induction of abdominal sepsis. Taken together, our findings suggest that miR-155 regulates pulmonary formation of NETs in abdominal sepsis via PAD4 up-regulation and histone 3 citrullination. Thus, targeting miR-155 could be a useful target to reduce pulmonary damage in abdominal sepsis.
  •  
18.
  • Hawez, Avin, et al. (författare)
  • MiR-155 Regulates PAD4-Dependent Formation of Neutrophil Extracellular Traps
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating data suggest that neutrophil extracellular traps (NETs) exert a key function in several diseases. Peptidylarginine deiminase 4 (PAD4) regulates NET formation via citrullination of histones. The aim of this study was to examine the role of miR-155 in controlling PAD4-dependent generation of NETs. Bone marrow neutrophils were stimulated with PMA and MIP-2. Pre-incubation of neutrophils with translational inhibitors (cycloheximide or puromycin) markedly decreased NET formation induced by PMA or MIP-2. Neutrophil transfection with a mimic miR-155 increased PMA-induced PAD4 mRNA expression and NET formation. In contrast, transfection with an antagomiR-155 decreased induction of PAD4 mRNA and NETs in response to PMA challenge. Bioinformatical examination of PAD4 revealed a potential binding site in AU-rich elements at the 3′-UTR region. MiR-155 binding to PAD4 was examined by use of target site blockers and RNA immunoprecipitation, revealing that miR-155 regulation of PAD4 mRNA is mediated via AU-rich elements in the 3′-UTR region. In conclusion, our findings demonstrate that miR-155 positively regulates neutrophil expression of PAD4 and expulsion of extracellular traps. Thus, our novel results indicate that targeting miR-155 might be useful to inhibit exaggerated NET generation in inflammatory diseases.
  •  
19.
  • Hussen, Bashdar Mahmud, et al. (författare)
  • Targeting miRNA by CRISPR/Cas in cancer : advantages and challenges
  • 2023
  • Ingår i: Military Medical Research. - 2095-7467. ; 10:1
  • Forskningsöversikt (refereegranskat)abstract
    • Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
  •  
20.
  •  
21.
  • Hwaiz, Rundk, et al. (författare)
  • Rac1-dependent secretion of platelet-derived CCL5 regulates neutrophil recruitment via activation of alveolar macrophages in septic lung injury.
  • 2015
  • Ingår i: Journal of Leukocyte Biology. - 1938-3673. ; 97:5, s. 975-984
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating evidence suggest that platelets play an important role in regulating neutrophil recruitment in septic lung injury. Herein, we hypothesized that platelet-derived CCL5 might facilitate sepsis-induced neutrophil accumulation in the lung. Abdominal sepsis was induced by CLP in C57BL/6 mice. CLP increased plasma levels of CCL5. Platelet depletion and treatment with the Rac1 inhibitor NSC23766 markedly reduced CCL5 in the plasma of septic mice. Moreover, Rac1 inhibition completely inhibited proteasePAR4-induced secretion of CCL5 in isolated platelets. Immunoneutralization of CCL5 decreased CLP-induced neutrophil infiltration, edema formation, and tissue injury in the lung. However, inhibition of CCL5 function had no effect on CLP-induced expression of Mac-1 on neutrophils. The blocking of CCL5 decreased plasma and lung levels of CXCL1 and CXCL2 in septic animals. CCL5 had no effect on neutrophil chemotaxis in vitro, suggesting an indirect effect of CCL5 on neutrophil recruitment. Intratracheal challenge with CCL5 increased accumulation of neutrophils and formation of CXCL2 in the lung. Administration of the CXCR2 antagonist SB225002 abolished CCL5-induced pulmonary recruitment of neutrophils. Isolated alveolar macrophages expressed significant levels of the CCL5 receptors CCR1 and CCR5. In addition, CCL5 triggered significant secretion of CXCL2 from isolated alveolar macrophages. Notably, intratracheal administration of clodronate not only depleted mice of alveolar macrophages but also abolished CCL5-induced formation of CXCL2 in the lung. Taken together, our findings suggest that Rac1 regulates platelet secretion of CCL5 and that CCL5 is a potent inducer of neutrophil recruitment in septic lung injury via formation of CXCL2 in alveolar macrophages.
  •  
22.
  • Hwaiz, Rundk, et al. (författare)
  • Rac1 regulates platelet shedding of CD40L in abdominal sepsis.
  • 2014
  • Ingår i: Laboratory Investigation. - : Elsevier BV. - 1530-0307 .- 0023-6837. ; 94:9, s. 1054-1063
  • Tidskriftsartikel (refereegranskat)abstract
    • Matrix metalloproteinase-9 (MMP-9) regulates platelet shedding of CD40L in abdominal sepsis. However, the signaling mechanisms controlling sepsis-induced shedding of CD40L from activated platelets remain elusive. Rac1 has been reported to regulate diverse functions in platelets; we hypothesized herein that Rac1 might regulate platelet shedding of CD40L in sepsis. The specific Rac1 inhibitor NSC23766 (N6-[2-[[4-(diethylamino)-1-methylbutyl] amino]-6-methyl-4-pyrimidinyl]-2 methyl-4, 6-quinolinediamine trihydrochloride) was administered to mice undergoing cecal ligation and puncture (CLP). Levels of CD40L and MMP-9 in plasma, platelets, and neutrophils were determined by use of ELISA, western blot, and confocal microscopy. Platelet depletion abolished the CLP-induced increase in plasma levels of CD40L. Rac1 activity was significantly increased in platelets from septic animals. Administration of NSC23766 abolished the CLP-induced enhancement of soluble CD40L levels in the plasma. Moreover, Rac1 inhibition completely inhibited proteinase-activated receptor-4-induced surface mobilization and secretion of CD40L in isolated platelets. CLP significantly increased plasma levels of MMP-9 and Rac1 activity in neutrophils. Treatment with NSC23766 markedly attenuated MMP-9 levels in the plasma from septic mice. In addition, Rac1 inhibition abolished chemokine-induced secretion of MMP-9 from isolated neutrophils. Finally, platelet shedding of CD40L was significantly reduced in response to stimulation with supernatants from activated MMP-9-deficient neutrophils compared with supernatants from wild-type neutrophils, indicating a direct role of neutrophil-derived MMP-9 in regulating platelet shedding of CD40L. Our novel data suggest that sepsis-induced platelet shedding of CD40L is dependent on Rac1 signaling. Rac1 controls surface mobilization of CD40L on activated platelets and MMP-9 secretion from neutrophils. Thus, our findings indicate that targeting Rac1 signaling might be a useful way to control pathologic elevations of CD40L in the systemic circulation in abdominal sepsis.Laboratory Investigation advance online publication, 21 July 2014; doi:10.1038/labinvest.2014.92.
  •  
23.
  • Hwaiz, Rundk, et al. (författare)
  • Rac1 signaling regulates sepsis-induced pathologic inflammation in the lung via attenuation of Mac-1 expression and CXC chemokine formation.
  • 2013
  • Ingår i: Journal of Surgical Research. - : Elsevier BV. - 1095-8673 .- 0022-4804. ; 183:2, s. 798-807
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive neutrophil recruitment is a major feature in septic lung damage although the signaling mechanisms behind pulmonary infiltration of neutrophils in sepsis remain elusive. In the present study, we hypothesized that Rac1 might play an important role in pulmonary neutrophil accumulation and tissue injury in abdominal sepsis. Male C57BL/6 mice were treated with Rac1 inhibitor NSC23766 (5 mg/kg) before cecal ligation and puncture (CLP). Bronchoalveolar lavage fluid and lung tissue were collected for the quantification of neutrophil recruitment and edema and CXC chemokine formation. Blood was collected for the determination of Mac-1 on neutrophils and proinflammatory compounds in plasma. Gene expression of CXC chemokines and tumor necrosis factor alpha was determined by quantitative reverse transcription-polymerase chain reaction in alveolar macrophages. Rac1 activity was increased in lungs from septic animals, and NSC23766 significantly decreased pulmonary activity of Rac1 induced by CLP. Administration of NSC23766 markedly reduced CLP-triggered neutrophil infiltration, edema formation, and tissue damage in the lung. Inhibition of Rac1 decreased CLP-induced neutrophil expression of Mac-1 and pulmonary formation of CXC chemokines. Moreover, NSC23766 abolished the sepsis-evoked elevation of messenger RNA levels of CXC chemokines and tumor necrosis factor alpha in alveolar macrophages. Rac1 inhibition decreased the CLP-induced increase in plasma levels of high mobility group protein B1 and interleukin 6, indicating a role of Rac1 in systemic inflammation. In conclusion, our results demonstrate that Rac1 signaling plays a key role in regulating pulmonary infiltration of neutrophils and tissue injury via regulation of chemokine production in the lung and Mac-1 expression on neutrophils in abdominal sepsis. Thus, targeting Rac1 activity might be a useful strategy to protect the lung in abdominal sepsis.
  •  
24.
  • Khan, Umama, et al. (författare)
  • Neutrophil extracellular traps in colorectal cancer progression and metastasis
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:14
  • Forskningsöversikt (refereegranskat)abstract
    • Neutrophils form sticky web-like structures known as neutrophil extracellular traps (NETs) as part of innate immune response. NETs are decondensed extracellular chromatin filaments comprising nuclear and cytoplasmic proteins. NETs have been implicated in many gastrointestinal diseases including colorectal cancer (CRC). However, the regulatory mechanisms of NET formation and potential pharmacological inhibitors in the context of CRC have not been thoroughly discussed. In this review, we intend to highlight roles of NETs in CRC progression and metastasis as well as the potential of targeting NETs during colon cancer therapy.
  •  
25.
  • Lepsenyi, Mattias, et al. (författare)
  • CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells
  • 2021
  • Ingår i: Clinical and Experimental Metastasis. - : Springer Science and Business Media LLC. - 1573-7276 .- 0262-0898. ; 38:4, s. 401-410
  • Tidskriftsartikel (refereegranskat)abstract
    • Peritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.
  •  
26.
  • Linders, Johan, et al. (författare)
  • Complement Component 3 Is Required for Tissue Damage, Neutrophil Infiltration, and Ensuring NET Formation in Acute Pancreatitis
  • 2020
  • Ingår i: European Surgical Research. - : S. Karger AG. - 0014-312X .- 1421-9921. ; 61:6, s. 163-176
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Neutrophil extracellular traps (NETs) are known to play an important role in the pathophysiology of acute pancreatitis (AP). Activation of the complement cascade has been shown to occur in AP. The aim of this study was to examine whether complement component 3 is involved in the generation of NETs in AP.METHODS: AP was induced in wild-type and C3-deficient mice by retrograde infusion of taurocholate into the pancreatic duct. Blood, lung, and pancreas tissue were collected and MPO activity was determined in lung and pancreas tissue. Histological examination of the inflamed pancreas was performed. Plasma levels of CXCL2, MMP-9, IL-6, and DNA-histone complexes as well as pancreatic levels of CXCL1 and CXCL2 were determined by use of enzyme-linked immunosorbent assay. NETs were detected in the pancreas by electron microscopy. The amount of MPO and citrullinated histone 3 in neutrophils isolated from bone marrow was examined using flow cytometry.RESULTS: In C3-deficient mice, challenge with taurocholate yielded much fewer NETs in the pancreatic tissue compared with wild-type controls. Taurocholate-induced blood levels of amylase, tissue injury, and neutrophil recruitment in the pancreas were markedly reduced in the mice lacking C3. Furthermore, MPO levels in the lung, and plasma levels of IL-6, MMP-9, and CXCL2 were significantly lower in the C3-deficient mice compared to wild-type mice after the induction of AP. In vitro studies revealed that neutrophils from C3-deficient mice had normal NET-forming ability and recombinant C3a was not capable of directly inducing NETs formation in the wild-type neutrophils.CONCLUSION: C3 plays an important role in the pathophysiology of AP as it is necessary for the recruitment of neutrophils into the pancreas and ensuring NETs formation. Targeting C3 could hence be a potential strategy to ameliorate local damage as well as remote organ dysfunction in AP.
  •  
27.
  • Linders, Johan, et al. (författare)
  • Extracellular cold-inducible RNA-binding protein regulates neutrophil extracellular trap formation and tissue damage in acute pancreatitis
  • 2020
  • Ingår i: Laboratory Investigation. - : Elsevier BV. - 0023-6837. ; 100:12, s. 1618-1630
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil extracellular traps (NETs) play a key role in the development of acute pancreatitis (AP). In the present study, we studied the role of extracellular cold-inducible RNA-binding protein (eCIRP), a novel damage-associated-molecular-pattern molecule, in severe AP. C57BL/6 mice underwent retrograde infusion of taurocholate into the pancreatic duct. C23, an eCIRP inhibitor, was given 1 h prior to induction of AP. Pancreatic, lung, and blood samples were collected and levels of citrullinated histone 3, DNA-histone complexes, eCIRP, myeloperoxidase (MPO), amylase, cytokines, matrix metalloproteinase-9 (MMP-9), and CXC chemokines were quantified after 24 h. NETs were detected by electron microscopy in the pancreas and bone marrow-derived neutrophils. Amylase secretion was analyzed in isolated acinar cells. Plasma was obtained from healthy individuals and patients with mild and moderate severe or severe AP. Taurocholate infusion induced NET formation, inflammation, and tissue injury in the pancreas. Pretreatment with C23 decreased taurocholate-induced pancreatic and plasma levels of eCIRP and tissue damage in the pancreas. Blocking eCIRP reduced levels of citrullinated histone 3 and NET formation in the pancreas as well as DNA-histone complexes in the plasma. In addition, administration of C23 attenuated MPO levels in the pancreas and lung of mice exposed to taurocholate. Inhibition of eCIRP reduced pancreatic levels of CXC chemokines and plasma levels of IL-6, HMGB-1, and MMP-9 in mice with severe AP. Moreover, eCIRP was found to be bound to NETs. Coincubation with C23 reduced NET-induced amylase secretion in isolated acinar cells. Patients with severe AP had elevated plasma levels of eCIRP compared with controls. Our novel findings suggest that eCIRP is a potent regulator of NET formation in the inflamed pancreas. Moreover, these results show that targeting eCIRP with C23 inhibits inflammation and tissue damage in AP. Thus, eCIRP could serve as an effective target to attenuate pancreatic damage in patients with AP.
  •  
28.
  • Luo, Lingtao, et al. (författare)
  • Pro-inflammatory role of neutrophil extracellular traps in abdominal sepsis.
  • 2014
  • Ingår i: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 307:7, s. 586-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive neutrophil activation is a major component in septic lung injury. Neutrophil-derived DNA may form extracellular traps in response to bacterial invasions. The aim of the present study was to investigate the potential role of neutrophil extracellular traps (NETs) in septic lung injury. Male C57BL/6 mice were treated with rhDNAse (5 mg/kg) after cecal ligation and puncture (CLP). Extracellular DNA was stained by Sytox green and NET formation was quantified by confocal microscopy and cell-free DNA in plasma, peritoneal cavity and lung. Blood, peritoneal fluid and lung tissue were harvested for analysis of neutrophil infiltration, NET levels, tissue injury as well as CXC chemokine and cytokine formation. We observed that CLP caused increased formation of NETs in the plasma, peritoneal cavity and lung. Administration of rhDNAse not only eliminated NET formation in the plasma, peritoneal cavity and bronchoalveolar space but also reduced lung edema and tissue damage 24 h after CLP induction. Moreover, treatment with rhDNAse decreased CLP-induced formation of CXC chemokines, IL-6 and HMGB1 in the plasma as well as CXC chemokines and IL-6 in the lung. In vitro, we found that neutrophil-derived NETs had the capacity to stimulate secretion of CXCL2, TNF-α and HMGB1 from alveolar macrophages. Taken together, our findings show that NETs regulate pulmonary infiltration of neutrophils and tissue injury via formation of pro-inflammatory compounds in abdominal sepsis. Thus, we conclude that NETs exert a pro-inflammatory role in septic lung injury.
  •  
29.
  • Madhi, Raed, et al. (författare)
  • c-Abl kinase regulates neutrophil extracellular trap formation, inflammation, and tissue damage in severe acute pancreatitis
  • 2019
  • Ingår i: Journal of Leukocyte Biology. - 0741-5400. ; 106:2, s. 455-466
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil extracellular traps (NETs) are involved in acute pancreatitis (AP) but mechanisms controlling NET expulsion in AP are incompletely understood. Herein, we examined the role of c-Abelson (c-Abl) kinase in NET formation and tissue damage in severe AP. AP was induced by taurocholate infusion into pancreatic duct or intraperitoneal administration of l-arginine in mice. Pancreatic, lung, and blood samples were collected and levels of phosphorylated c-Abl kinase, citrullinated histone 3, DNA-histone complexes, myeloperoxidase, amylase, cytokines, and CXC chemokines were quantified. Citrullinated histone 3, reactive oxygen species (ROS), and NET formation were determined in bone marrow neutrophils. Taurocholate challenge increased phosphorylation of c-Abl kinase and levels of citrullinated histone 3 in the pancreas as well as DNA-histone complexes in the plasma. Administration of the c-Abl kinase inhibitor GZD824 not only abolished activation of c-Abl kinase but also decreased levels of citrullinated histone 3 in the pancreas and DNA-histone complexes in the plasma of animals with AP. Moreover, GZD824 decreased plasma levels of amylase, IL-6, and MMP-9 as well as edema, acinar cell necrosis, hemorrhage, CXC chemokine formation, and neutrophil infiltration in the inflamed pancreas. A beneficial effect of c-Abl kinase inhibition was confirmed in l-arginine-induced pancreatitis. In vitro, inhibition of c-Abl kinase reduced TNF-α-induced formation of ROS, histone 3 citrullination, and NETs in isolated bone marrow neutrophils. Our findings demonstrate that c-Abl kinase regulates NET formation in the inflamed pancreas. In addition, inhibition of c-Abl kinase reduced pancreatic tissue inflammation, and damage in AP. Thus, targeting c-Abl kinase might be a useful way to protect the pancreas in severe AP.
  •  
30.
  • Madhi, Raed, et al. (författare)
  • Targeting peptidylarginine deiminase reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis
  • 2019
  • Ingår i: Journal of Cellular Physiology. - : Wiley. - 0021-9541 .- 1097-4652. ; 234:7, s. 11850-11860
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent evidence suggests that neutrophil extracellular traps (NETs) play an important role in the development of acute pancreatitis (AP). Herein, we examined the role of peptidylarginine deiminase (PAD), which has been shown to regulate NET formation, in severe AP. AP was induced by retrograde of taurocholate infusion into pancreatic duct in C57BL/6 mice. PAD was pharmacologically inhibited using Cl-amidine, a pan-PAD inhibitor. Pancreata were collected, and histones, citrullinated histone 3, chemokines, myeloperoxidase, and NETs were quantified. Chemokines, matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and DNA-histone complexes were determined in plasma samples. Infusion of taurocholate induced formation of NETs in pancreatic tissues of mice. Pretreatment with Cl-amidine markedly reduced the NET formation in the inflamed pancreas. Moreover, inhibition of PAD decreased the levels of blood amylase as well as edema, acinar cell necrosis, hemorrhage, and neutrophil infiltration in the pancreas of animals with AP. Administration of Cl-amidine attenuated the myeloperoxidase levels in the pancreas and lung of mice exposed to taurocholate. In addition, Cl-amidine decreased pancreatic levels of CXC chemokines, plasma levels of IL-6, and MMP-9 in mice with severe AP. This study shows that Cl-amidine is a potent inhibitor of NET formation in severe AP. Also, our results suggest that PAD regulates pathological inflammation and tissue damage in the inflamed pancreas. Thus, targeting PAD might be a useful strategy to treat patients with severe AP.
  •  
31.
  •  
32.
  • Merza, Mohammed, et al. (författare)
  • Human thrombin-derived host defense peptides inhibit neutrophil recruitment and tissue injury in severe acute pancreatitis.
  • 2014
  • Ingår i: American Journal of Physiology: Gastrointestinal and Liver Physiology. - : American Physiological Society. - 1522-1547 .- 0193-1857. ; 307:9, s. 914-921
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute pancreatitis (AP) is characterized by leukocyte infiltration and tissue injury. Herein, we wanted to examine the potential effects of thrombin-derived host defense peptides (TDPs) in severe AP. Pancreatitis was provoked by infusion of taurocholate into the pancreatic duct or by intraperitoneal administration of L-arginine in C57BL/6 mice. Animals were treated with the TDPs GKY20 and GKY25 or a control peptide WFF25 30 min before induction of AP. TDPs reduced blood amylase levels, neutrophil infiltration, hemorrhage, necrosis and edema formation in the inflamed pancreas. Treatment with TDPs markedly attenuated the taurocholate-induced increase in plasma levels of CXCL2 and interleukin-6. Moreover, administration of TDPs decreased histone 3, histone 4 and MPO levels in the pancreas in response to taurocholate challenge. Interestingly, administration of TDPs abolished neutrophil expression of Mac-1 in mice with pancreatitis. In addition, TDPs inhibited CXCL2-induced chemotaxis of isolated neutrophils in vitro. Fluorescent-labeled TDP was found to directly bind to isolated neutrophils. Finally, a beneficial effect of TDPs was confirmed in L-arginine-induced pancreatitis. Our novel results demonstrate that TDPs exert protective effects against pathological inflammation and tissue damage in AP. These novel findings suggest that TDPs might be useful in the management of patients with severe AP.
  •  
33.
  • Merza, Mohammed, et al. (författare)
  • Neutrophil Extracellular Traps Induce Trypsin Activation, Inflammation, and Tissue Damage in Mice with Severe Acute Pancreatitis.
  • 2015
  • Ingår i: Gastroenterology. - : Elsevier BV. - 1528-0012 .- 0016-5085. ; 149:7, s. 1920-1920
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils are involved in development of acute pancreatitis (AP), but it is not clear how neutrophil-induced tissue damage is regulated. In addition to secreting antimicrobial compounds, activated neutrophils eliminate invading microorganisms by expelling nuclear DNA and histones to form extracellular web-like structures called neutrophil extracellular traps (NETs). However, NETs have been reported contribute to organ dysfunction in patients with infectious diseases. We investigated whether NETs contribute to development of AP in mice.
  •  
34.
  • Muhammad, Asad, et al. (författare)
  • P-selectin glycoprotein-ligand-1 regulates pulmonary recruitment of neutrophils in a platelet-independent manner in abdominal sepsis
  • 2009
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 156:2, s. 307-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil-mediated lung injury is an insidious feature in sepsis although the mechanisms regulating pulmonary recruitment of neutrophils remain elusive. Here, we investigated the role of P-selectin glycoprotein-ligand-1 (PSGL-1) in sepsis-induced neutrophil recruitment and tissue injury in the lung. Bronchoalveolar infiltration of neutrophils, levels of myeloperoxidase, oedema formation and CXC chemokines were determined 24 h after caecal ligation and puncture (CLP) in mice. Animals were pretreated with a control antibody, monoclonal antibodies directed against PSGL-1 and P-selectin as well as a platelet-depleting antibody directed against GP1b alpha. CLP caused pulmonary damage characterized by oedema formation, neutrophil infiltration and increased levels of CXC chemokines in the lung. Immunoneutralization of PSGL-1 or P-selectin reduced CLP-induced neutrophil recruitment in the bronchoalveolar space by more than 56% and lung myeloperoxidase activity by 62%. Notably, the inhibitory effect of the anti-PSGL-1 antibody on sepsis-induced neutrophil infiltration was also observed in platelet-depleted mice. Moreover, inhibition of PSGL-1 and P-selectin abolished CLP-induced oedema formation and tissue damage in the lung. CLP-induced formation of CXC chemokines was not changed in mice pretreated with the anti-PSGL-1 and anti-P-selectin antibodies. These data demonstrate that PSGL-1 plays a key role in pulmonary infiltration of neutrophils as well as lung oedema associated with abdominal sepsis. Moreover, our findings suggest that PSGL-1-dependent neutrophil recruitment is independent of circulating platelets. Thus, these novel findings indicate that PSGL-1 may be a useful target to protect against sepsis-induced accumulation of neutrophils and tissue damage in the lung.
  •  
35.
  • Muhammad, Asad, et al. (författare)
  • Platelets support pulmonary recruitment of neutrophils in abdominal sepsis
  • 2009
  • Ingår i: Critical Care Medicine. - 1530-0293. ; 37:4, s. 1389-1396
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Recent findings Indicate that platelets not only regulate thrombosis and hemostasis but may also be involved in proinflammatory activities. Herein, we hypothesized that platelets may play a role in sepsis by activating and priming circulating neutrophils for subsequent recruitment Into the lung. Design: Prospective experimental study. Setting. University Hospital Research Unit. Subject. Male C57BL/6 mice. Interventions. Lung edema, bronchoalveolar infiltration of neutrophils, levels of myeloperoxidase, expression and function of membrane-activated complex-1 (Mac-1) on neutrophils and the CXC chemokines, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant were determined after cecal ligation and puncture (CLP). Mice received a platelet-depleting antibody as well as antibodies directed against P-selectin glycoprotein-ligand-1 and Mac-1 before CLP induction. Measurements and Main Results. CLP caused significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP up-regulated Mac-1 expression on neutrophils and increased the number of neutrophils binding platelets in the circulation. Interestingly, depletion of platelets reduced CLP-induced edema and neutrophil recruitment in the bronchoalveolar space by >60%. Furthermore, depletion of platelets reduced Mac-1 expression on neutrophils. On the other hand, inhibition of P-selectin glycoprotein-ligand-1 abolished CLP-induced neutrophil-platelet aggregation but had no effect on neutrophil expression of Mac-1. Conclusions: These data demonstrate that platelets play a key role in regulating infiltration of neutrophils and edema formation in the lung via upregulation of Mac-1 in abdominal sepsis. (Crit Care Med 2009; 37:1389-1396)
  •  
36.
  • Palani, Karzan, et al. (författare)
  • Rho-kinase regulates adhesive and mechanical mechanisms of pulmonary recruitment of neutrophils in abdominal sepsis.
  • 2012
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 1879-0712 .- 0014-2999. ; 682:1-3, s. 181-187
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesized that Rho-kinase signaling plays a role in mechanical and adhesive mechanisms of neutrophil accumulation in lung. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 prior to cecal ligation and puncture (CLP). Lung levels of myeloperoxidase (MPO) and histological tissue damage were determined 6h and 24h after CLP. Expression of Mac-1 and F-actin formation in neutrophils were quantified by using flow cytometry 6h after CLP. Mac-1 expression and F-actin formation were also determined in isolated neutrophils up to 3h after stimulation with CXCL2. Labeled and activated neutrophils co-incubated with Y-27632, an anti-Mac-1 antibody and cytochalasin B were adoptively transferred to CLP mice. Y-27632 reduced the CLP-induced pulmonary injury and MPO activity as well as Mac-1 on neutrophils. Neutrophil F-actin formation peaked at 6h and returned to baseline levels 24h after CLP induction. Rho-kinase inhibition decreased CLP-provoked F-actin formation in neutrophils. CXCL2 rapidly increased Mac-1 expression and F-actin formation in neutrophils. Co-incubation with Y-27632 abolished CXCL2-induced Mac-1 up-regulation and formation of F-actin in neutrophils. Notably, co-incubation with cytochalasin B inhibited formation of F-actin but did not reduce Mac-1 expression on activated neutrophils. Adoptive transfer experiments revealed that co-incubation of neutrophils with the anti-Mac-1 antibody or cytochalasin B significantly decreased pulmonary accumulation of neutrophils in septic mice. Our data show that targeting Rho-kinase effectively reduces neutrophil recruitment and tissue damage in abdominal sepsis. Moreover, these findings demonstrate that Rho-kinase-dependent neutrophil accumulation in septic lung injury is regulated by both adhesive and mechanical mechanisms.
  •  
37.
  • Papareddy, Praveen, et al. (författare)
  • The role of extracellular vesicle fusion with target cells in triggering systemic inflammation
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) play a crucial role in intercellular communication by transferring bioactive molecules from donor to recipient cells. As a result, EV fusion leads to the modulation of cellular functions and has an impact on both physiological and pathological processes in the recipient cell. This study explores the impact of EV fusion on cellular responses to inflammatory signaling. Our findings reveal that fusion renders non-responsive cells susceptible to inflammatory signaling, as evidenced by increased NF-κB activation and the release of inflammatory mediators. Syntaxin-binding protein 1 is essential for the merge and activation of intracellular signaling. Subsequent analysis show that EVs transfer their functionally active receptors to target cells, making them prone to an otherwise unresponsive state. EVs in complex with their agonist, require no further stimulation of the target cells to trigger mobilization of NF-κB. While receptor antagonists were unable to inhibit NF-κB activation, blocking of the fusion between EVs and their target cells with heparin mitigated inflammation in mice challenged with EVs.
  •  
38.
  •  
39.
  • Rahman, Milladur, et al. (författare)
  • Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis
  • 2012
  • Ingår i: Inflammation Research. - : Springer Science and Business Media LLC. - 1420-908X .- 1023-3830. ; 61:6, s. 571-579
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in UndeterminedOBJECTIVE: Platelets promote sepsis-induced activation of neutrophils via secretion of CD40L. However, the mechanism regulating the release of platelet-derived CD40L is not known. We hypothesized that matrix metalloproteinases (MMPs) might regulate shedding of platelet-expressed CD40L and neutrophil activation in sepsis.METHODS: Wild-type C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Animals were pretreated with a broad-range MMP inhibitor, GM6001, prior to CLP induction. Edema formation, CXC chemokine and myeloperoxidase (MPO) levels and bronchoalveolar neutrophils in the lung as well as plasma levels of CD40L were quantified. Flow cytometry was used to determine expression of Mac-1 on neutrophils and CD40L on platelets. Intravital fluorescence microscopy was used to analyze leukocyte-endothelial cell interactions in the pulmonary microcirculation.RESULTS: The MMP inhibitor reduced sepsis-induced release of CD40L and maintained normal levels of CD40L on platelets. Inhibition of MMP decreased CLP-induced neutrophil expression of Mac-1, formation of CXC chemokines and edema as well as neutrophil infiltration in the lung. Intravital fluorescence microscopy revealed that the MMP inhibitor attenuated leukocyte adhesion in venules whereas capillary trapping of leukocytes was not affected by MMP inhibition.CONCLUSIONS: We describe a novel role of metalloproteinases in regulating platelet-dependent activation and infiltration of neutrophils in septic lung injury which might be related to controlling CD40L shedding from platelets. We conclude that targeting metalloproteinases may be a useful strategy for limiting acute lung injury in abdominal sepsis.
  •  
40.
  • Rahman, Milladur (författare)
  • Platelet-dependent pulmonary recruitment of neutrophils in abdominal sepsis
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sepsis and subsequent multiple organ failure remain the major cause of mortality in intensive care units. Leukocyte-mediated tissue damage is a key feature in septic lung injury. Accumulating data suggest that platelets play a role in inflammation and tissue injury. However, the role of platelets in sepsis-induced leukocyte recruitment and lung edema formation in abdominal sepsis is not demonstrated yet. We hypothesized that platelets may play a significant role in pulmonary neutrophil recruitment and tissue damage in abdominal sepsis. For this purpose, we used the mice cecal ligation and puncture (CLP) model of abdominal sepsis. CLP causes significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines and increased edema formation in the lung. CLP also provoked Mac-1 expression on circulating neutrophils. Interestingly, depletion of platelets reduced CLP-induced lung damage, neutrophil recruitment in the bronchoalveolar space and edema formation as well as up-regulation of Mac-1 on neutrophils. However, blocking of platelet-neutrophil aggregates formation did not attenuate CLP-induced lung damage and neutrophil activation suggesting that platelets regulate sepsis-induced lung damage via up-regulation of Mac-1 in a contact independent manner. We also found that plasma levels of soluble CD40L was significantly increased in septic mice. Use of CD40L-deficient mice confirmed that platelet-derived CD40L is a pivotal mediator of neutrophil activation and recruitment in abdominal sepsis and this platelet mediated neutrophil activation was indirect and mediated via formation of MIP-2 and CXCR2 signaling. In addition, we observed a significant increase of soluble CD40L levels in septic patients. Interestingly, we found that inhibition of matrix MMPs reduced Mac-1 up-regulation on neutrophils and CXC chemokine formation in the septic lung injury. We also found that MMP-9 levels are significantly increased in septic mice but not MMP-2. In vitro studies revealed that activated platelets up-regulate surface expression of MMP-9 and that inhibition of MMP-9 decreased platelet shedding of CD40L. Use of MMP-9-deficient mice suggested that MMP-9 regulates platelet CD40L shedding in abdominal sepsis. Moreover, pulmonary infiltration of neutrophils as well as edema formation and lung injury were markedly decreased in septic animals lacking MMP-9. Plasma levels of MMP-9 were significantly increased in patients with septic shock compared to healthy controls. Taken together, platelets regulate neutrophil activation in abdominal sepsis via MMP-9-dependent shedding of platelet-derived CD40L. Thus, MMP-9 and CD40L may constitute novel and effective therapeutic targets in abdominal sepsis.
  •  
41.
  • Rahman, Milladur, et al. (författare)
  • Platelet-Derived CD40L (CD154) Mediates Neutrophil Upregulation of Mac-1 and Recruitment in Septic Lung Injury.
  • 2009
  • Ingår i: Annals of Surgery. - 1528-1140.
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE:: To define the role of CD40L in abdominal sepsis. BACKGROUND:: Platelets promote sepsis-induced pulmonary recruitment of neutrophils. However, the identity of the platelet-derived molecule regulating neutrophil infiltration is not known. The hypothesis of the present study was that platelet-derived CD40L might be responsible for platelet-mediated activation and accumulation of neutrophils in sepsis. METHODS:: Wild-type C57BL/6 mice and CD40L gene-deficient mice were exposed to cecal ligation and puncture (CLP). Lung edema, bronchoalveolar neutrophils, CD40L and macrophage inflammatory protein-2 (MIP-2) plasma levels, myeloperoxidase activity and Mac-1 expression were determined up to 24 hours after CLP induction. For platelet depletion was an anti-GP1balpha antibody administered before CLP. RESULTS:: Plasma levels of soluble CD40L increased and surface expression of CD40L on platelets decreased in CLP mice. Platelet depletion reduced CLP-induced CD40L levels by 90%. CLP-provoked Mac-1 expression on neutrophils was abolished in CD40L-deficient mice. Interestingly, CLP-induced edema and myeloperoxidase activity in the lung as well as neutrophil infiltration in the broncoalveolar space were markedly reduced in mice lacking CD40L. In vitro experiments showed that CD40L was not capable of directly increasing Mac-1 levels on neutrophils. Instead, CLP-induced plasma levels of MIP-2 were significantly reduced in CD40L-deficient mice and inhibition of the MIP-2 receptor (CXCR2) decreased Mac-1 expression on neutrophils in septic animals. CONCLUSIONS:: CD40L derived from platelets is a potent activator of neutrophils and mediates sepsis-induced neutrophil recruitment and lung edema. The neutrophil activating mechanism of CD40L is indirect and mediated via MIP-2 formation and CXCR2 signaling. Targeting CD40L may be an effective approach to limit pulmonary damage in abdominal sepsis.
  •  
42.
  • Rahman, Milladur, et al. (författare)
  • Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis.
  • 2013
  • Ingår i: Journal of Thrombosis and Haemostasis. - : Elsevier BV. - 1538-7933 .- 1538-7836. ; 11:7, s. 1385-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objectives: Platelet-derived CD40L is known to regulate neutrophil recruitment and lung damage in sepsis. However, the mechanism regulating shedding of CD40L from activated platelets is not known. We hypothesized that matrix metalloproteinase-9 might cleave surface expressed CD40L and regulate pulmonary accumulation of neutrophils in sepsis. Methods: Abdominal sepsis was induced by cecal ligation and puncture (CLP) in wild-type and MMP-9-deficient mice. Edema formation, CXC chemokine, myeloperoxidase levels, neutrophils in the lung as well as plasma levels of CD40L and MMP-9 were quantified. Results: CLP increased plasma levels of MMP-9 but not MMP-2. The CLP-induced decrease of platelet surface CD40L and increase of soluble CD40L levels were significantly attenuated in MMP-9 gene-deficient mice. Moreover, pulmonary MPO activity and neutrophil infiltration in the alveolar space as well as edema formation and lung injury were markedly decreased in septic animals lacking MMP-9. In vitro studies revealed that inhibition of MMP-9 decreased platelet shedding of CD40L. Moreover, recombinant MMP-9 was capable of cleaving surface expressed CD40L on activated platelets. In human studies, plasma levels of MMP-9 were significantly increased in patients with septic shock compared to healthy controls although MMP-9 levels did not correlate with organ injury score. Conclusions: Our novel data propose a role of MMP-9 in regulating platelet-dependent infiltration of neutrophils and tissue damage in septic lung injury by controlling CD40L shedding from platelets. We conclude that targeting MMP-9 may be a useful strategy to limit acute lung injury in abdominal sepsis. This article is protected by copyright. All rights reserved.
  •  
43.
  • Rahman, Milladur, et al. (författare)
  • Ticagrelor reduces neutrophil recruitment and lung damage in abdominal sepsis.
  • 2014
  • Ingår i: Platelets. - : Informa UK Limited. - 1369-1635 .- 0953-7104. ; 25:4, s. 257-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Platelets play an important role in abdominal sepsis and P2Y12 receptor antagonists have been reported to exert anti-inflammatory effects. Herein, we assessed the impact of platelet inhibition with the P2Y12 receptor antagonist ticagrelor on pulmonary neutrophil recruitment and tissue damage in a model of abdominal sepsis. Wild-type C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Animals were treated with ticagrelor (100 mg/kg) or vehicle prior to CLP induction. Edema formation and bronchoalveolar neutrophils as well as lung damage were quantified. Flow cytometry was used to determine expression of platelet-neutrophil aggregates, neutrophil activation and CD40L expression on platelets. CLP-induced pulmonary infiltration of neutrophils at 24 hours was reduced by 50% in ticagrelor-treated animals. Moreover, ticagrelor abolished CLP-provoked lung edema and decreased lung damage score by 41%. Notably, ticagrelor completely inhibited formation of platelet-neutrophil aggregates and markedly reduced thrombocytopenia in CLP animals. In addition, ticagrelor reduced platelet shedding of CD40L in septic mice. Our data indicate that ticagrelor can reduce CLP-induced pulmonary neutrophil recruitment and lung damage suggesting a potential role for platelet antagonists, such as ticagrelor, in the management of patients with abdominal sepsis.
  •  
44.
  • Rahman, Milladur, et al. (författare)
  • Transcriptomic Analysis Reveals Differential Expression of Genes between Lung Capillary and Post Capillary Venules in Abdominal Sepsis
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 22:19, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung endothelial cell dysfunction plays a central role in septic-induced lung injury. We hypothesized that endothelial cell subsets, capillary endothelial cells (capEC) and post capillary venules (PCV), might play different roles in regulating important pathophysiology in sepsis. In order to reveal global transcriptomic changes in endothelial cell subsets during sepsis, we induced sepsis in C57BL/6 mice by cecal ligation and puncture (CLP). We confirmed that CLP induced systemic and lung inflammation in our model. Endothelial cells (ECs) from lung capillary and PCV were isolated by cell sorting and transcriptomic changes were analyzed by bioinformatic tools. Our analysis revealed that lung capEC are transcriptionally different than PCV. Comparison of top differentially expressed genes (DEGs) of capEC and PCV revealed that capEC responses are different than PCV during sepsis. It was found that capEC are more enriched with genes related to regulation of coagulation, vascular permeability, wound healing and lipid metabolic processes after sepsis. In contrast, PCV are more enriched with genes related to chemotaxis, cell–cell adhesion by integrins, chemokine biosynthesis, regulation of actin filament process and neutrophil homeostasis after sepsis. In addition, we predicted some transcription factor targets that regulate a significant number of DEGs in sepsis. We proposed that targeting certain DEGs or transcriptional factors would be useful in protecting against sepsis-induced lung damage
  •  
45.
  • Roller, Jonas, et al. (författare)
  • Direct in vivo observations of P-selectin glycoprotein ligand-1-mediated leukocyte-endothelial cell interactions in the pulmonary microvasculature in abdominal sepsis in mice.
  • 2013
  • Ingår i: Inflammation Research. - : Springer Science and Business Media LLC. - 1420-908X .- 1023-3830. ; 62:3, s. 275-282
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: P-selectin glycoprotein ligand-1 (PSGL-1) has been shown to play a significant role in septic lung injury. However, the detailed role of PSGL-1 in the pulmonary leukocyte recruitment remains elusive. We have developed a method based on intravital fluorescence microscopy of the lung microcirculation to examine the role of PSGL-1 in the extravasation process of leukocytes in septic lung damage. METHODS: Male C57BL/6 mice were treated with a control antibody or an anti-PSGL-1 antibody prior to cecal ligation and puncture (CLP). Leukocyte-endothelium interactions and microvascular hemodynamics were studied in pulmonary arterioles, capillaries and venules 4 h after CLP. RESULTS: Immunoneutralization of PSGL-1 decreased CLP-induced leukocyte rolling in pulmonary arterioles and venules significantly. Inhibition of PSGL-1 had no effect on leukocyte adhesion in venules, whereas the number of adherent leukocytes in lung arterioles and the number of trapped leukocytes in capillaries were markedly decreased. Moreover, immunoneutralization of PSGL-1 improved microvascular perfusion in the lung of septic animals. CONCLUSIONS: Taken together, these results document that PSGL-1 mediates leukocyte rolling in arterioles and venules. However, inhibition of PSGL-1 only decreases leukocyte adhesion in arterioles, suggesting that leukocyte rolling is not a prerequisite for pulmonary venular adhesion of leukocytes in sepsis. In addition, our data show that capillary trapping of leukocytes is dependent on PSGL-1 function.
  •  
46.
  • Rosén, Roberto, et al. (författare)
  • Accuracy of MRI in early rectal cancer: national cohort study
  • 2022
  • Ingår i: The British journal of surgery. - : Oxford University Press (OUP). - 1365-2168 .- 0007-1323.
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiological staging of rectal cancer dictates subsequent patienttreatment. In early-stage disease, local excision is associatedwith reduced morbidity, mortality, and costs, and maintainsbowel continuity compared with surgery, where the whole orpart of the rectum is resected1–3. Nearly 90 per cent of patientswith T1 rectal cancer have N0 disease and are therefore potentially curable with local resection, yet the majority undergo major resection4–6. MRI is the primary staging investigation used to predictlocal stage in rectal cancer7, mainly owing to its ability to allocatepatients in need of neoadjuvant treatment8–10. There is potentially inaccuracy in MRI staging for nodal involvement and differentiation of T1 from T2 tumours6,7,11. Consequently, cT1 and cT2 areoften combined and comprice tumours considered for local resection. Apart from a recent study6 reporting 54 per cent accuracy forMRI cT1–2 category, combined cT1–2 status has not beeninvestigated.The aim of this large nationwide retrospective cohort study wasto investigate the staging accuracy of MRI, from a clinical perspective, in early rectal cancer when combining cT1 and cT2 categories.
  •  
47.
  •  
48.
  • Uhlig, Elisabeth, et al. (författare)
  • Comparative immunomodulatory effects in mice and in human dendritic cells of five bacterial strains selected for biocontrol of leafy green vegetables
  • 2022
  • Ingår i: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. - : Elsevier BV. - 1873-6351 .- 0278-6915. ; 165
  • Tidskriftsartikel (refereegranskat)abstract
    • The market for ready-to eat vegetables is increasing, but unfortunately so do the numbers of food-borne illness outbreaks related to these products. A previous study has identified bacterial strains suitable for biocontrol of leafy green vegetables to reduce the exposure to pathogens in these products. As a tentative safety evaluation, five selected strains (Rhodococcus cerastii MR5x, Bacillus coagulans LMG P-32205, Bacillus coagulans LMG P-32206, Pseudomonas cedrina LMG P-32207 and Pseudomonas punonensis LMG P-32204) were individually compared for immunomodulating effects in mice and in human monocyte-derived dendritic cells (MoDCs). Mice receiving the two B. coagulans strains consistently resemble the immunological response of the normal control, and no, or low, cell activation and pro-inflammatory cytokine expression was observed in MoDCs exposed to B. coagulans strains. However, different responses were seen in the two models for the Gram-negative P. cedrina and the Gram-positive R. cerastii. Moreover, P. punonensis and B. coagulans increased the microbiota diversity in mice as seen by the Shannon-Wiener index. In conclusion, the two strains of B. coagulans showed an immunological response that indicate that they lack pathogenic abilities, thus encouraging further safety evaluation and showing great potential to be used as biocontrol agents on leafy green vegetables.
  •  
49.
  • Wang, Yongzhi, et al. (författare)
  • Distinct patterns of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation
  • 2013
  • Ingår i: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 304:4, s. 298-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Wang Y, Roller J, Slotta JE, Zhang S, Luo L, Rahman M, Syk I, Menger MD, Thorlacius H. Distinct patterns of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation. Am J Physiol Lung Cell Mol Physiol 304: L298-L305, 2013. First published December 28, 2012; doi:10.1152/ajplung.00246.2012.The mechanisms of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation remain elusive. Male C57BL/6 mice received lipopolysaccharide (LPS) intrapulmonary (intratracheally, it) or systemically (intravenously, iv) for 1-18 h. Leukocyte responses in lung were analyzed by use of intravital fluorescence microscopy. Plasma and lung levels of CXC chemokines as well as Mac-1 and F-actin expression in leukocytes and bronchoalveolar leukocytes were quantified. Venular leukocyte rolling was markedly increased in response to local LPS but only marginally after systemic LPS. Leukocyte adhesion in venules was enhanced in both groups although adhesion was higher in mice receiving LPS intratracheally compared with LPS intravenously. Systemic LPS caused more leukocytes trapping in capillaries compared with local LPS. The ratio of adherent leukocytes in venules compared with capillaries was higher in response to local LPS, suggesting that leukocytes were more prone to accumulate in venules in local inflammation and in capillaries in systemic inflammation. Systemic LPS triggered higher F-actin formation and Mac-1 expression in leukocytes compared with local LPS. Local and systemic LPS caused similar increases in CXC chemokines in the lung whereas intravenous endotoxin provoked higher levels of CXC chemokines in the circulation. Interestingly, intratracheal LPS increased recruitment of leukocytes in the alveolar space whereas intravenous LPS was ineffective in promoting leukocyte accumulation in the bronchoalveolar space. In conclusion, our data demonstrate that pulmonary microvascular recruitment of leukocytes differs in local and systemic inflammation, which might be related to premature activation and stiffening of circulating leukocytes in endotoxemia.
  •  
50.
  • Wetterholm, Erik, et al. (författare)
  • CT is unreliable in locoregional staging of early colon cancer : A nationwide registry-based study
  • 2023
  • Ingår i: Scandinavian Journal of Surgery. - : SAGE Publications. - 1799-7267 .- 1457-4969. ; 112:1, s. 33-40
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVE: The option to treat early colon cancer (CC) with local resection, as well as trials investigating neoadjuvant treatment, has increased the importance of identifying early-stage disease in the workup. Most CC patients are T- and N-staged preoperatively with CT, although its reliability in staging early CC remains elusive. The aim of this study was to investigate CT-staging accuracy in early CC by evaluating pT and pN stages in patients staged as cT1-2, and cT and cN stages in patients with pT1 tumors.METHODS: Retrospective population-based cohort study on data from the nationwide Swedish colorectal cancer registry on all CC patients staged as cT1-2 and all patients with pT1 undergoing surgical resection 2009-2018. CT-acquired T- and N-stages were compared with final histopathology. Factors potentially influencing accuracy were analyzed with uni- and multivariate logistic regression.RESULTS: Computed tomography (CT) staged 4849 patients as cT1-2, whereas 2445 (50%) were pT3 and 453 (9%) pT4. Positive predictive value of the cT1-2 stage was 40%. Of 1401 pT1 patients, 624 (45%) were staged as cT1-2, 139 (10%) as cT3, 15 (1%) as cT4 and 623 (44%) as cTx. In all, 1474 (30%) of the cT1-2 patients were pN+, whereas CT staged 1062 (72%) as cN0. A total of 771 patients were staged as cN+, whereas 403 (52%) were pN0. Overall accuracy in determining N+ was 67%, with 26% sensitivity and 88% specificity. Positive and negative predictive values in determining N+ were 48% and 73%, respectively.CONCLUSIONS: This nationwide population-based study shows that CT-staging carries a substantial risk of understaging locally advanced tumors as cT1-2 and pT1 tumors as cTx, in addition to poor N-staging. Thus, CT obtained T- and N-staging should not be used for deciding treatment strategies in early CC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy