SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rastgoo S.) "

Sökning: WFRF:(Rastgoo S.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Obers, Niels A., et al. (författare)
  • Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
  • 2022
  • Ingår i: Progress in Particle and Nuclear Physics. - : Elsevier BV. - 0146-6410 .- 1873-2224. ; 125
  • Forskningsöversikt (refereegranskat)abstract
    • The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
  •  
2.
  • Gladding, PA, et al. (författare)
  • Multiomics, virtual reality and artificial intelligence in heart failure
  • 2021
  • Ingår i: Future cardiology. - : Future Medicine Ltd. - 1744-8298 .- 1479-6678. ; 17:8, s. 1335-1347
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Multiomics delivers more biological insight than targeted investigations. We applied multiomics to patients with heart failure (HF) and reduced ejection fraction (HFrEF), with machine learning applied to advanced ECG (AECG) and echocardiography artificial intelligence (Echo AI). Patients & methods: In total, 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography–mass spectrometry and solid-phase microextraction volatilomics in plasma and urine. HFrEF was defined using left ventricular (LV) global longitudinal strain, EF and N-terminal pro hormone BNP. AECG and Echo AI were performed over 5 min, with a subset of patients undergoing a virtual reality mental stress test. Results: A-ECG had similar diagnostic accuracy as N-terminal pro hormone BNP for HFrEF (area under the curve = 0.95, 95% CI: 0.85–0.99), and correlated with global longitudinal strain (r = -0.77, p < 0.0001), while Echo AI-generated measurements correlated well with manually measured LV end diastolic volume r = 0.77, LV end systolic volume r = 0.8, LVEF r = 0.71, indexed left atrium volume r = 0.71 and indexed LV mass r = 0.6, p < 0.005. AI-LVEF and other HFrEF biomarkers had a similar discrimination for HFrEF (area under the curve AI-LVEF = 0.88; 95% CI: -0.03 to 0.15; p = 0.19). Virtual reality mental stress test elicited arrhythmic biomarkers on AECG and indicated blunted autonomic responsiveness (alpha 2 of RR interval variability, p = 1 × 10-4) in HFrEF. Conclusion: Multiomics-related machine learning shows promise for the assessment of HF.
  •  
3.
  • Arun, K. G., et al. (författare)
  • New horizons for fundamental physics with LISA
  • 2022
  • Ingår i: Living Reviews in Relativity. - : Springer Science and Business Media LLC. - 1433-8351 .- 2367-3613. ; 25:1
  • Forskningsöversikt (refereegranskat)abstract
    • The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.
  •  
4.
  • Fritton, Massimo, et al. (författare)
  • The Role of Kinetics versus Thermodynamics in Surface-Assisted Ullmann Coupling on Gold and Silver Surfaces
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 141:12, s. 4824-4832
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface-assisted Ullmann coupling is the workhorse of on-surface synthesis. Despite its obvious relevance, many fundamental and mechanistic aspects remain elusive. To shed light on individual reaction steps and their progression with temperature, temperature-programmed X-ray photoelectron spectroscopy (TP-XPS) experiments are performed for a prototypical model system. The activation of the coupling by initial dehalogenation is tracked by monitoring Br 3d core levels, whereas the C 1s signature is used to follow the emergence of metastable organometallic intermediates and their conversion to the final covalent products upon heating in real time. The employed 1,3,5-tris(4-bromophenyl)benzene precursor is comparatively studied on Ag(111) versus Au(111), whereby intermolecular bonds and network topologies are additionally characterized by scanning tunneling microscopy (STM). Besides the well-comprehended differences in activation temperatures for debromination, the thermal progression shows marked differences between the two surfaces. Debromination proceeds rapidly on Ag(111), but is relatively gradual on Au(111). While on Ag(111) debromination is well explained by first-order reaction kinetics, thermodynamics prevail on Au(111), underpinned by a close agreement between experimentally deduced and density functional theory (DFT) calculated reaction enthalpies. Thermodynamically controlled debromination on Au(111) over a large temperature range implies an unexpectedly long lifetime of surface-stabilized radicals prior to covalent coupling, as corroborated by TP-XPS of C is core levels. These insights are anticipated to play an important role regarding our ability to rationally synthesize atomically precise low-dimensional covalent nanostructures on surfaces.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy