SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rawat Swati) "

Sökning: WFRF:(Rawat Swati)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Singh, Swati, et al. (författare)
  • Assessment of pathogen removal efficiency of vertical flow constructed wetland treating septage
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Septage refers to the semi-liquid waste material that accumulates in septic tanks and other onsite sanitation systems. It is composed of a complex mixture of human excreta, wastewater, and various solid particles. Septage is a potential source of water pollution owing to presence of high organic content, significant pathogen concentrations, and a range of nutrients like nitrogen and phosphorus. The harmful impacts of septage pollution poses significant risks to public health through the contamination of drinking water sources, eutrophication of water bodies and spread of water borne diseases. Conventional septage treatment technologies often face limitations such as high operational costs, energy requirements, and the need for extensive infrastructure. Therefore, with an aim to treat septage through an alternative cost effective and energy-efficient technology, a laboratory-scale constructed wetland (CW) system (0.99 m2) consisting of a sludge drying bed and a vertical flow wetland bed was utilized for the treatment of septage. The sludge drying bed and vertical flow beds were connected in series and filled with a combination of gravel with varying sizes (ranging from 5 to 40 mm) and washed sand. Canna indica plants were cultivated on both beds to facilitate phytoremediation process. The system was operated with intermittent dosing of 30 Ltrs of septage every day for 2 months. The HRT of the system was fixed at 48 h. The average inlet loads of Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS) were measured as 150 ± 65.7 g m−2 day−1, 713 ± 443.9 g m−2 day−1, and 309 ± 66.3 g m−2 day−1, respectively. After treatment, the final effluent had an average load of 6 g m−2 day−1 for BOD5, 15 g m−2 day−1 for COD, and 51 g m−2 day−1 for TSS, indicating that the CW system achieved an average removal efficiency of 88% for BOD, 87% for COD, and 65% for TSS. The average load of total coliforms and helminthes eggs in the influent was recorded as 4 × 108 Colony-Forming Units (CFU) m−2 day−1 and 3 × 107 eggs m−2 day−1, respectively. However, the CW system demonstrated significant effectiveness in reducing microbial contamination, with an average removal efficiency of 99% for both total coliforms and helminthes eggs. The vertical flow constructed wetland system, equipped with pretreatment by sludge drying bed, has proven to be efficient in treatment of septage.
  •  
2.
  • Kumar, Nallani Vijay, et al. (författare)
  • Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8.
  • 2016
  • Ingår i: Molecular and cellular biology. - 1098-5549. ; 36:6, s. 913-22
  • Tidskriftsartikel (refereegranskat)abstract
    • The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy