SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Receveur A.) "

Sökning: WFRF:(Receveur A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Molin, Anna-Maja, et al. (författare)
  • A novel microdeletion syndrome at 3q13.31 characterised by developmental delay, postnatal overgrowth, hypoplastic male genitals, and characteristic facial features
  • 2012
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 49:2, s. 104-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Congenital deletions affecting 3q11q23 have rarely been reported and only five cases have been molecularly characterised. Genotype. phenotype correlation has been hampered by the variable sizes and breakpoints of the deletions. In this study, 14 novel patients with deletions in 3q11q23 were investigated and compared with 13 previously reported patients. Methods Clinical data were collected from 14 novel patients that had been investigated by high resolution microarray techniques. Molecular investigation and updated clinical information of one cytogenetically previously reported patient were also included. Results The molecular investigation identified deletions in the region 3q12.3q21.3 with different boundaries and variable sizes. The smallest studied deletion was 580 kb, located in 3q13.31. Genotype. phenotype comparison in 24 patients sharing this shortest region of overlapping deletion revealed several common major characteristics including significant developmental delay, muscular hypotonia, a high arched palate, and recognisable facial features including a short philtrum and protruding lips. Abnormal genitalia were found in the majority of males, several having micropenis. Finally, a postnatal growth pattern above the mean was apparent. The 580 kb deleted region includes five RefSeq genes and two of them are strong candidate genes for the developmental delay: DRD3 and ZBTB20. Conclusion A newly recognised 3q13.31 microdeletion syndrome is delineated which is of diagnostic and prognostic value. Furthermore, two genes are suggested to be responsible for the main phenotype.
  •  
2.
  • Morozova-Roche, Ludmilla A, et al. (författare)
  • Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants
  • 2000
  • Ingår i: Journal of Structural Biology. - : Elsevier BV. - 1047-8477 .- 1095-8657. ; 130:2-3, s. 339-351
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild-type human lysozyme and its two stable amyloidogenic variants have been found to form partially folded states at low pH. These states are characterized by extensive disruption of tertiary interactions and partial loss of secondary structure. Incubation of the proteins at pH 2.0 and 37 degrees C (Ile56Thr and Asp67His variants) or 57 degrees C (wild-type) results in the formation of large numbers of fibrils over several days of incubation. Smaller numbers of fibrils could be observed under other conditions, including neutral pH. These fibrils were analyzed by electron microscopy, Congo red birefringence, thioflavine-T binding, and X-ray fiber diffraction, which unequivocally show their amyloid character. These data demonstrate that amyloidogenicity is an intrinsic property of human lysozyme and does not require the presence of specific mutations in its primary structure. The amyloid fibril formation is greatly facilitated, however, by the introduction of "seeds" of preformed fibrils to the solutions of the variant proteins, suggesting that seeding effects could be important in the development of systemic amyloidosis. Fibril formation by wild-type human lysozyme is greatly accelerated by fibrils of the variant proteins and vice versa, showing that seeding is not specific to a given protein. The fact that wild-type lysozyme has not been found in ex vivo deposits from patients suffering from this disease is likely to be related to the much lower population of incompletely folded states for the wild-type protein compared to its amyloidogenic variants under physiological conditions. These results support the concept that the ability to form amyloid is a generic property of proteins, but one that is mitigated against in a normally functioning organism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy