SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reeve J. L. V.) "

Sökning: WFRF:(Reeve J. L. V.)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sliz, E., et al. (författare)
  • Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.
  •  
2.
  •  
3.
  •  
4.
  • Kurki, MI, et al. (författare)
  • FinnGen provides genetic insights from a well-phenotyped isolated population
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 613:7944, s. 508-
  • Tidskriftsartikel (refereegranskat)abstract
    • Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
  •  
5.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
6.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
7.
  • Feng, Shaohong, et al. (författare)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
8.
  • Moayyeri, Alireza, et al. (författare)
  • Genetic determinants of heel bone properties : genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:11, s. 3054-3068
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 x 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 x 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 x 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology.
  •  
9.
  • Shrine, Nick, et al. (författare)
  • New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 481-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
  •  
10.
  • Sakornsakolpat, Phuwanat, et al. (författare)
  • Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 494-505
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 x 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.
  •  
11.
  • Martin, W. P., et al. (författare)
  • Obesity is common in chronic kidney disease and associates with greater antihypertensive usage and proteinuria: evidence from a cross-sectional study in atertiary nephrology centre
  • 2020
  • Ingår i: Clinical Obesity. - : Wiley. - 1758-8103 .- 1758-8111. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is a treatable risk factor for chronic kidney disease progression. We audited the reporting of body-mass index in nephrology outpatient clinics to establish the characteristics of individuals with obesity in nephrology practice. Body-mass index, clinical information and biochemical measures were recorded for patients attending clinics between 3(rd)August, 2018 and 18(th)January, 2019. Inferential statistics and Pearson correlations were used to investigate relationships between body-mass index, type 2 diabetes, hypertension and proteinuria. Mean +/- SD BMI was 28.6 +/- 5.8 kg/m(2)(n = 374). Overweight and obesity class 1 were more common in males (P= .02). Amongst n = 123 individuals with obesity and chronic kidney disease, mean +/- SD age, n (%) female and median[IQR] eGFR were 64.1 +/- 14.2 years, 52 (42.3%) and 29.0[20.5] mL/min/BSA, respectively. A positive correlation between increasing body-mass index and proteinuria was observed in such patients (r= 0.21,P= .03), which was stronger in males and those with CKD stages 4 and 5. Mean body-mass index was 2.3 kg/m(2)higher in those treated with 4-5 versus 0-1 antihypertensives (P= .03). Amongst n = 59 patients with obesity, chronic kidney disease and type 2 diabetes, 2 (3.5%) and 0 (0%) were prescribed a GLP-1 receptor analogue and SGLT2-inhibitor, respectively. Our data provides a strong rationale not only for measuring body-mass index but also for acting on the information in nephrology practice, although prospective studies are required to guide treatment decisions in people with obesity and chronic kidney disease.
  •  
12.
  •  
13.
  • Kanis, J A, et al. (författare)
  • A family history of fracture and fracture risk: a meta-analysis.
  • 2004
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 35:5, s. 1029-37
  • Tidskriftsartikel (refereegranskat)abstract
    • The aims of the present study were to determine whether a parental history of any fracture or hip fracture specifically are significant risk factors for future fracture in an international setting, and to explore the effects of age, sex and bone mineral density (BMD) on this risk. We studied 34,928 men and women from seven prospectively studied cohorts followed for 134,374 person-years. The cohorts comprised the EPOS/EVOS study, CaMos, the Rotterdam Study, DOES and cohorts at Sheffield, Rochester and Gothenburg. The effect of family history of osteoporotic fracture or of hip fracture in first-degree relatives, BMD and age on all clinical fracture, osteoporotic fracture and hip fracture risk alone was examined using Poisson regression in each cohort and for each sex. The results of the different studies were merged from the weighted beta coefficients. A parental history of fracture was associated with a modest but significantly increased risk of any fracture, osteoporotic fracture and hip fracture in men and women combined. The risk ratio (RR) for any fracture was 1.17 (95% CI=1.07-1.28), for any osteoporotic fracture was 1.18 (95% CI=1.06-1.31), and for hip fracture was 1.49 (95% CI=1.17-1.89). The risk ratio was higher at younger ages but not significantly so. No significant difference in risk was seen between men and women with a parental history for any fracture (RR=1.17 and 1.17, respectively) or for an osteoporotic fracture (RR=1.17 and 1.18, respectively). For hip fracture, the risk ratios were somewhat higher, but not significantly higher, in men than in women (RR=2.02 and 1.38, respectively). A family history of hip fracture in parents was associated with a significant risk both of all osteoporotic fracture (RR 1.54; 95CI=1.25-1.88) and of hip fracture (RR=2.27; 95% CI=1.47-3.49). The risk was not significantly changed when BMD was added to the model. We conclude that a parental history of fracture (particularly a family history of hip fracture) confers an increased risk of fracture that is independent of BMD. Its identification on an international basis supports the use of this risk factor in case-finding strategies.
  •  
14.
  • Kanis, J A, et al. (författare)
  • A meta-analysis of previous fracture and subsequent fracture risk.
  • 2004
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 35:2, s. 375-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous fracture is a well-documented risk factor for future fracture. The aim of this study was to quantify this risk on an international basis and to explore the relationship of this risk with age, sex, and bone mineral density (BMD). We studied 15259 men and 44902 women from 11 cohorts comprising EVOS/EPOS, OFELY, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, DOES, Hiroshima, and two cohorts from Gothenburg. Cohorts were followed for a total of 250000 person-years. The effect of a prior history of fracture on the risk of any fracture, any osteoporotic fracture, and hip fracture alone was examined using a Poisson model for each sex from each cohort. Covariates examined were age, sex, and BMD. The results of the different studies were merged by using the weighted beta-coefficients. A previous fracture history was associated with a significantly increased risk of any fracture compared with individuals without a prior fracture (RR = 1.86; 95% CI = 1.75-1.98). The risk ratio was similar for the outcome of osteoporotic fracture or for hip fracture. There was no significant difference in risk ratio between men and women. Risk ratio (RR) was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any fracture (8%) and for hip fracture (22%). The risk ratio was stable with age except in the case of hip fracture outcome where the risk ratio decreased significantly with age. We conclude that previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by measurement of BMD. Its validation on an international basis permits the use of this risk factor in case finding strategies.
  •  
15.
  • Kanis, J A, et al. (författare)
  • Smoking and fracture risk: a meta-analysis.
  • 2005
  • Ingår i: Osteoporosis international. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 16:2, s. 155-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Smoking is widely considered a risk factor for future fracture. The aim of this study was to quantify this risk on an international basis and to explore the relationship of this risk with age, sex and bone mineral density (BMD). We studied 59,232 men and women (74% female) from ten prospective cohorts comprising EVOS/EPOS, DOES, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, Hiroshima and two cohorts from Gothenburg. Cohorts were followed for a total of 250,000 person-years. The effect of current or past smoking, on the risk of any fracture, any osteoporotic fracture and hip fracture alone was examined using a Poisson model for each sex from each cohort. Covariates examined were age, sex and BMD. The results of the different studies were merged using the weighted beta-coefficients. Current smoking was associated with a significantly increased risk of any fracture compared to non-smokers (RR=1.25; 95% Confidence Interval (CI)=1.15-1.36). Risk ratio (RR) was adjusted marginally downward when account was taken of BMD, but it remained significantly increased (RR=1.13). For an osteoporotic fracture, the risk was marginally higher (RR=1.29; 95% CI=1.13-1.28). The highest risk was observed for hip fracture (RR=1.84; 95% CI=1.52-2.22), but this was also somewhat lower after adjustment for BMD (RR=1.60; 95% CI=1.27-2.02). Risk ratios were significantly higher in men than in women for all fractures and for osteoporotic fractures, but not for hip fracture. Low BMD accounted for only 23% of the smoking-related risk of hip fracture. Adjustment for body mass index had a small downward effect on risk for all fracture outcomes. For osteoporotic fracture, the risk ratio increased with age, but decreased with age for hip fracture. A smoking history was associated with a significantly increased risk of fracture compared with individuals with no smoking history, but the risk ratios were lower than for current smoking. We conclude that a history of smoking results in fracture risk that is substantially greater than that explained by measurement of BMD. Its validation on an international basis permits the use of this risk factor in case finding strategies.
  •  
16.
  • Kanis, John A, et al. (författare)
  • A meta-analysis of prior corticosteroid use and fracture risk.
  • 2004
  • Ingår i: Journal of bone and mineral research. - 0884-0431 .- 1523-4681. ; 19:6, s. 893-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between use of corticosteroids and fracture risk was estimated in a meta-analysis of data from seven cohort studies of approximately 42,000 men and women. Current and past use of corticosteroids was an important predictor of fracture risk that was independent of prior fracture and BMD. INTRODUCTION: The aims of this study were to validate that corticosteroid use is a significant risk factor for fracture in an international setting and to explore the effects of age and sex on this risk. MATERIALS AND METHODS: We studied 42,500 men and women from seven prospectively studied cohorts followed for 176,000 patient-years. The cohorts comprised the EPOS/EVOS study, CaMos, the Rotterdam Study, Dubbo Osteoporosis Epidemiology Study (DOES), and prospective cohorts at Sheffield, Rochester, and Gothenburg. The effect of ever use of corticosteroids, BMD, age, and sex on all fracture, osteoporotic fracture, and hip fracture risk alone was examined using Poisson regression in each cohort and for each sex. The results of the different studies were merged from the weighted beta coefficients. RESULTS: Previous corticosteroid use was associated with a significantly increased risk of any fracture, osteoporotic fracture, and hip fracture when adjusted for BMD. Relative risk of any fracture ranged from 1.98 at the age of 50 years to 1.66 at the age of 85 years. For osteoporotic fracture, the range of relative risk was 2.63-1.71, and for hip fracture 4.42-2.48. The estimate of relative risk was higher at younger ages, but not significantly so. No significant difference in risk was seen between men and women. The risk was marginally and not significantly upwardly adjusted when BMD was excluded from the model. The risk was independent of prior fracture. In the three cohorts that documented current corticosteroid use, BMD was significantly reduced at the femoral neck, but fracture risk was still only partly explained by BMD. CONCLUSION: We conclude that prior and current exposure to corticosteroids confers an increased risk of fracture that is of substantial importance beyond that explained by the measurement of BMD. Its identification on an international basis validates the use of this risk factor in case-finding strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy