SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rejeb A.) "

Sökning: WFRF:(Rejeb A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alimena, Juliette, et al. (författare)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
2.
  • Chijimatsu, M., et al. (författare)
  • Building Confidence in the Mathematical Models by Calibration With A T-H-M Field Experiment
  • 2004
  • Ingår i: Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems — Fundamentals, Modelling, Experiments and Applications. - : Elsevier. ; , s. 193-198
  • Bokkapitel (refereegranskat)abstract
    • Geological disposal of nuclear fuel wastes relies on the concept of multiple barrier systems. In order to predict the performance of these barriers, mathematical models have been developed, verified and validated against analytical solutions, laboratory tests and field experiments within the international DECOVALEX project. These models in general consider the full coupling of thermal (T), hydrological (H) and mechanical (M) processes that would prevail in the geological media around the repository. This paper shows the process of building confidence in the mathematical models by calibration with a reference T-H-M experiment with realistic rock mass conditions and bentonite properties and measured outputs of thermal, hydraulic and mechanical variables.
  •  
3.
  • Chijimatsu, M., et al. (författare)
  • Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 1 : Conceptualization and characterization of the problems and summary of results
  • 2005
  • Ingår i: International Journal of Rock Mechanics And Mining Sciences. - : Elsevier BV. - 1365-1609 .- 1873-4545. ; 42:5-6, s. 720-730
  • Tidskriftsartikel (refereegranskat)abstract
    • Geological disposal of the spent nuclear fuel often uses the concept of multiple barrier systems. In order to predict the performance of these barriers, mathematical models have been developed, verified and validated against analytical solutions, laboratory tests and field experiments within the international DECOVALEX III project. These models in general consider the full coupling of thermal (T), hydraulic (H) and mechanical (M) processes that would prevail in the geological media around the repository. For Bench Mark Test no. 1 (BMTI) of the DECOVALEX III project, seven multinational research teams studied the implications of coupled THM processes on the safety of a hypothetical nuclear waste repository at the near-field and are presented in three accompanying papers in this issue. This paper is the first of the three companion papers, which provides the conceptualization and characterization of the BMT1 as well as some general conclusions based on the findings of the numerical studies. It also shows the process of building confidence in the mathematical models by calibration with a reference T-H-M experiment with realistic rock mass conditions and bentonite properties and measured outputs of thermal, hydraulic and mechanical variables.
  •  
4.
  • Millard, A., et al. (författare)
  • Evaluation of Thm Coupling on the Safety Assessment of a Nuclear Fuel Waste Repository in a Homogeneous Hard Rock
  • 2004
  • Ingår i: Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems — Fundamentals, Modelling, Experiments and Applications. - : Elsevier. ; , s. 211-216
  • Bokkapitel (refereegranskat)abstract
    • An evaluation of the importance of the thermo-hydro-mechanical couplings (THM) on the performance assessment of a deep underground storage design has been made as part of the international DECOVALEX III project. It is a numerical study that simulates a generic repository configuration in the near field in a homogeneous hard rock. A periodic pattern comprises a single vertical borehole, containing a canister surrounded by an over-pack and a bentonite layer, and the backfilled upper portion of the gallery. The thermo-hydro-mechanical evolution of the whole configuration is simulated over a period of 100 years. The importance of the rock mass intrinsic permeability has been investigated through three values : 10 -17, 10 -18 and 10 -19 m 2. Comparison of the results predicted by fully coupled THM analysis as well as partially coupled TH, TM and HM analysis, in terms of several predefined indicators, enables us to identify the couplings, which play a crucial role with respect to safety issues. The results demonstrate that temperature is hardly affected by the couplings. In contrast the influence of the couplings on the mechanical stresses is considerable.
  •  
5.
  • Millard, A., et al. (författare)
  • Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 2 : Effects of THM coupling in continuous and homogeneous rocks
  • 2005
  • Ingår i: International Journal of Rock Mechanics And Mining Sciences. - : Elsevier BV. - 1365-1609 .- 1873-4545. ; 42:5-6, s. 731-744
  • Tidskriftsartikel (refereegranskat)abstract
    • An evaluation of the importance of the thermo-hydro-mechanical couplings (THM) on the performance assessment of a deep underground radioactive waste repository has been made as a part of the international DECOVALEX III project. It is a numerical study that simulates a generic repository configuration in the near field in a continuous and homogeneous hard rock. A periodic repository configuration comprises a single vertical borehole, containing a canister surrounded by an over-pack and a bentonite layer, and the backfilled upper portion of the gallery. The thermo-hydro-mechanical evolution of the whole configuration is simulated over a period of 100 years. The importance of the rock mass's intrinsic permeability has been investigated through scoping calculations with three values: 10(-17), 10(-18) and 10(-19) m(2). Comparison of the results predicted by fully coupled THM analysis as well as partially coupled TH, TM and HM analyses, in terms of several predefined indicators of importance for performance assessment, enables us to identify the effects of the different combinations of couplings, which play a crucial role with respect to safety issues. The results demonstrate that temperature is hardly affected by the couplings. In contrast, the influence of the couplings on the mechanical stresses is considerable.
  •  
6.
  • Nguyen, T. S., et al. (författare)
  • Implications of Coupled Thermo-Hydro-Mechanical Processes on the Safety of a Hypothetical Nuclear Fuel Waste Repository
  • 2004
  • Ingår i: Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems — Fundamentals, Modelling, Experiments and Applications. - : Elsevier. ; , s. 225-230
  • Bokkapitel (refereegranskat)abstract
    • In Bench Mark Test no. 1 (BMT1) of the DECOVALEX III international project, we looked at the implications of coupled thermo-hydro-mechanical (THM) processes on the safety of a hypothetical nuclear waste repository. The research teams first calibrated their models with the results of an in-situ heater experiments to obtain confidence in the capability of the models to simulate the main physical processes. Then the models were used to perform scoping calculations for the near-field of the hypothetical repository, with varying degrees of THM coupling complexity. The general conclusion from the BMT1 exercise is that it would be prudent to perform full THM coupling analyses for two main reasons. First, several safety features might be overlooked with lesser degrees of coupling. Second, the ability to predict and interpret several physical processes, during the post-closure monitoring period, is important for confidence building and public acceptance. Such ability is attainable only with fully coupled THM models.
  •  
7.
  • Rutqvist, J., et al. (författare)
  • A numerical study of THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 3 : Effects of THM coupling in sparsely fractured rocks
  • 2005
  • Ingår i: International Journal of Rock Mechanics And Mining Sciences. - : Elsevier BV. - 1365-1609 .- 1873-4545. ; 42:5-6, s. 745-755
  • Tidskriftsartikel (refereegranskat)abstract
    • As a part of the international DECOVALEX III project, and the European BENCHPAR project, the impact of thermal-hydrological-mechanical (THM) couplings on the performance of a bentonite-back-filled nuclear waste repository in near-field crystalline rocks is evaluated in a Bench-Mark Test problem (BMT1) and the results are presented in a series of three companion papers in this issue. This is the third paper with focuses on the effects of THM processes at a repository located in a sparsely fractured rock. Several independent coupled THM analyses presented in this paper show that THM couplings have the most significant impact on the mechanical stress evolution, which is important for repository design, construction and post-closure monitoring considerations. The results show that the stress evolution in the bentonite-back-filled excavations and the surrounding rock depends on the post-closure evolution of both fields of temperature and fluid pressure. It is further shown that the time required to full resaturation may play an important role for the mechanical integrity of the repository drifts. In this sense, the presence of hydraulically conducting fractures in the near-field rock might actually improve the mechanical performance of the repository. Hydraulically conducting fractures in the near-field rocks enhances the water supply to the buffers/back-fills, which promotes a more timely process of resaturation and development of swelling pressures in the back-fill, thus provides timely confining stress and support to the rock walls. In one particular case simulated in this study, it was shown that failure in the drift walls could be prevented if the compressive stresses in back-fill were fully developed within 50 yr, which is when thermally induced rock strain begins to create high differential (failure-prone) stresses in the near-field rocks. Published by Elsevier Ltd.
  •  
8.
  • Rutqvist, Jonny, et al. (författare)
  • Evaluation of the Impact of Thermal-Hydrological-Mechanical Couplings in Bentonite and Near-Field Rock Barriers of a Nuclear Waste Repository in Sparsely Fractured Hard Rock
  • 2004
  • Ingår i: Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems — Fundamentals, Modelling, Experiments and Applications. - : Elsevier. ; , s. 217-223
  • Bokkapitel (refereegranskat)abstract
    • As part of the international DECOVALEX III project and the European BENCHPAR project, this paper evaluates the impact of thermal-hydrological-mechanical (THM) couplings on the performance of a bentonite back-filled nuclear waste repository in sparsely fractured hard rock. The significance of THM coupling on the performance of a hypothetical repository is evaluated by several independent coupled numerical analyses. Moreover, the influence of a discrete fracture intersecting a deposition hole is discussed. The analysis shows that THM couplings have the most impact on the mechanical behaviour of bentonite-rock system, which is important for repository design considerations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy