SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Remnestål Julia) "

Sökning: WFRF:(Remnestål Julia)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Annika, et al. (författare)
  • Development of parallel reaction monitoring assays for cerebrospinal fluid proteins associated with Alzheimer's disease
  • 2019
  • Ingår i: Clinica Chimica Acta. - : Elsevier B.V.. - 0009-8981 .- 1873-3492. ; 494, s. 79-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed knowledge of protein changes in cerebrospinal fluid (CSF) across healthy and diseased individuals would provide a better understanding of the onset and progression of neurodegenerative disorders. In this study, we selected 20 brain-enriched proteins previously identified in CSF by antibody suspension bead arrays (SBA) to be potentially biomarkers for Alzheimer's disease (AD) and verified these using an orthogonal approach. We examined the same set of 94 CSF samples from patients affected by AD (including preclinical and prodromal), mild cognitive impairment (MCI), non-AD dementia and healthy individuals, which had previously been analyzed by SBA. Twenty-eight parallel reaction monitoring (PRM) assays were developed and 13 of them could be validated for protein quantification. Antibody profiles were verified by PRM. For seven proteins, the antibody profiles were highly correlated with the PRM results (r > 0.7) and GAP43, VCAM1 and PSAP were identified as potential markers of preclinical AD. In conclusion, we demonstrate the usefulness of targeted mass spectrometry as a tool for the orthogonal verification of antibody profiling data, suggesting that these complementary methods can be successfully applied for comprehensive exploration of CSF protein levels in neurodegenerative disorders.
  •  
2.
  • Bergström, Sofia, et al. (författare)
  • A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers : a GENFI study
  • 2021
  • Ingår i: Molecular Neurodegeneration. - : Springer Nature. - 1750-1326. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background A detailed understanding of the pathological processes involved in genetic frontotemporal dementia is critical in order to provide the patients with an optimal future treatment. Protein levels in CSF have the potential to reflect different pathophysiological processes in the brain. We aimed to identify and evaluate panels of CSF proteins with potential to separate symptomatic individuals from individuals without clinical symptoms (unaffected), as well as presymptomatic individuals from mutation non-carriers. Methods A multiplexed antibody-based suspension bead array was used to analyse levels of 111 proteins in CSF samples from 221 individuals from families with genetic frontotemporal dementia. The data was explored using LASSO and Random forest. Results When comparing affected individuals with unaffected individuals, 14 proteins were identified as potentially important for the separation. Among these, four were identified as most important, namely neurofilament medium polypeptide (NEFM), neuronal pentraxin 2 (NPTX2), neurosecretory protein VGF (VGF) and aquaporin 4 (AQP4). The combined profile of these four proteins successfully separated the two groups, with higher levels of NEFM and AQP4 and lower levels of NPTX2 in affected compared to unaffected individuals. VGF contributed to the models, but the levels were not significantly lower in affected individuals. Next, when comparing presymptomatic GRN and C9orf72 mutation carriers in proximity to symptom onset with mutation non-carriers, six proteins were identified with a potential to contribute to a separation, including progranulin (GRN). Conclusion In conclusion, we have identified several proteins with the combined potential to separate affected individuals from unaffected individuals, as well as proteins with potential to contribute to the separation between presymptomatic individuals and mutation non-carriers. Further studies are needed to continue the investigation of these proteins and their potential association to the pathophysiological mechanisms in genetic FTD.
  •  
3.
  •  
4.
  • Bergström, Sofia, et al. (författare)
  • Multi-cohort profiling reveals elevated CSF levels of brain-enriched proteins in Alzheimer's disease
  • 2021
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley. - 2328-9503. ; 8:7, s. 1456-1470
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Decreased amyloid beta (A beta) 42 together with increased tau and phospho-tau in cerebrospinal fluid (CSF) is indicative of Alzheimer's disease (AD). However, the molecular pathophysiology underlying the slowly progressive cognitive decline observed in AD is not fully understood and it is not known what other CSF biomarkers may be altered in early disease stages. Methods: We utilized an antibody-based suspension bead array to analyze levels of 216 proteins in CSF from AD patients, patients with mild cognitive impairment (MCI), and controls from two independent cohorts collected within the AETIONOMY consortium. Two additional cohorts from Sweden were used for biological verification. Results: Six proteins, amphiphysin (AMPH), aquaporin 4 (AQP4), cAMP-regulated phosphoprotein 21 (ARPP21), growth-associated protein 43 (GAP43), neurofilament medium polypeptide (NEFM), and synuclein beta (SNCB) were found at increased levels in CSF from AD patients compared with controls. Next, we used CSF levels of A beta 42 and tau for the stratification of the MCI patients and observed increased levels of AMPH, AQP4, ARPP21, GAP43, and SNCB in the MCI subgroups with abnormal tau levels compared with controls. Further characterization revealed strong to moderate correlations between these five proteins and tau concentrations. Interpretation: In conclusion, we report six extensively replicated candidate biomarkers with the potential to reflect disease development. Continued evaluation of these proteins will determine to what extent they can aid in the discrimination of MCI patients with and without an underlying AD etiology, and if they have the potential to contribute to a better understanding of the AD continuum.
  •  
5.
  •  
6.
  • Emami Khoonsari, Payam, et al. (författare)
  • Chitinase-3-like protein 1 (CH3L1) and Neurosecretory protein VGF (VGF) as two novel CSF biomarker candidates for improved diagnostics in Alzheimer’s disease
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by amyloid-β (Aβ) plaque deposition and accumulation of intracellular neurofibrillary tangles. This pathology is mirrored in the cerebrospinal fluid (CSF), where decreased Aβ42 together with increased total (t-tau) and phospho-tau (p-tau) today is used as a diagnostic marker. Although these biomarkers have a fairly good sensitivity and specificity, additional biomarkers are needed to further improve the accuracy for early disease detection and to monitor disease development. In this study, we used mass spectrometry-based shotgun proteomics to investigate the CSF proteome of patients with AD and mild cognitive impairment (MCI) as well as of non-demented controls. By combining the diagnostic markers (Aβ42, total t-tau, and p-tau) with a selection of proteomics biomarkers, the accuracy of predicting MCI to AD conversion increased from 83% to 92% with a specificity of 1.0 and sensitivity of 0.86. Among these markers, the levels of protein chitinase-3-like protein 1 (CH3L1) were significantly higher in AD and MCI converters compared to controls. In addition to Aβ42, t-tau, and p-tau the protein CH3L1 contributed mostly to the prediction accuracy. We also found statistically significant lower CSF levels of the neurosecretory protein VGF (VGF) in AD compared to controls. Taken together, our findings suggest that incorporating new CSF biomarkers can further enhance early diagnosis of AD.
  •  
7.
  • Emami Khoonsari, Payam, et al. (författare)
  • Improved Differential Diagnosis of Alzheimer's Disease by Integrating ELISA and Mass Spectrometry-Based Cerebrospinal Fluid Biomarkers
  • 2019
  • Ingår i: Journal of Alzheimer's Disease. - : IOS PRESS. - 1387-2877 .- 1875-8908. ; 67:2, s. 639-651
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease (AD) is diagnosed based on a clinical evaluation as well as analyses of classical biomarkers: A beta(42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF). Although the sensitivities and specificities of the classical biomarkers are fairly good for detection of AD, there is still a need to develop novel biochemical markers for early detection of AD. Objective: We explored if integration of novel proteins with classical biomarkers in CSF can better discriminate AD from non-AD subjects. Methods: We applied ELISA, mass spectrometry, and multivariate modeling to investigate classical biomarkers and the CSF proteome in subjects (n = 206) with 76 AD patients, 74 mild cognitive impairment (MCI) patients, 11 frontotemporal dementia (FTD) patients, and 45 non-dementia controls. The MCI patients were followed for 4-9 years and 21 of these converted to AD, whereas 53 remained stable. Results: By combining classical CSF biomarkers with twelve novel markers, the area of the ROC curves (AUROCS) of distinguishing AD and MCl/AD converters from non-AD were 93% and 96%, respectively. The FTDs and non-dementia controls were identified versus all other groups with AUROCS of 96% and 87%, respectively. Conclusions: Integration of new and classical CSF biomarkers in a model-based approach can improve the identification of AD, FTD, and non-dementia control subjects.
  •  
8.
  • Markaki, I., et al. (författare)
  • Cerebrospinal Fluid Levels of Kininogen-1 Indicate Early Cognitive Impairment in Parkinson’s Disease
  • 2020
  • Ingår i: Movement Disorders. - : John Wiley & Sons. - 0885-3185 .- 1531-8257.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cognitive impairment is common in patients with PD. Core markers of Alzheimer’s dementia have been related also to PD dementia, but no disease-specific signature to predict PD dementia exists to date. Objectives: The aim of this study was to investigate CSF markers associated with cognition in early PD. Methods: A high-throughput suspension bead array examined 216 proteins in CSF of 74 PD patients in the AETIONOMY project. Cognitive function was assessed with Repeatable Battery for the Assessment of the Neuropsychological Status, Montreal Cognitive Assessment, and Mini-Mental State Examination. Results: Of 69 patients with complete data, 34 had high (≥90) and 35 had low Repeatable Battery for the Assessment of the Neuropsychological Status total score (<90). Of 14 proteins in CSF that differed in levels between groups, increased kininogen-1, validated with several antibodies, was independently associated with lower Repeatable Battery for the Assessment of the Neuropsychological Status and Montreal Cognitive Assessment scores after adjustment for confounders. Conclusions: Kininogen-1 levels in CSF may serve as a marker of cognitive impairment in PD.
  •  
9.
  • Månberg, Anna, 1985-, et al. (författare)
  • Altered perivascular fibroblast activity precedes ALS disease onset
  • 2021
  • Ingår i: Nature Medicine. - : Nature Publishing Group. - 1078-8956 .- 1546-170X. ; 27:4, s. 640-646
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from well-defined factors in neuronal cells1, only a few reports consider that the variability of sporadic amyotrophic lateral sclerosis (ALS) progression can depend on less-defined contributions from glia2,3 and blood vessels4. In this study we use an expression-weighted cell-type enrichment method to infer cell activity in spinal cord samples from patients with sporadic ALS and mouse models of this disease. Here we report that patients with sporadic ALS present cell activity patterns consistent with two mouse models in which enrichments of vascular cell genes preceded microglial response. Notably, during the presymptomatic stage, perivascular fibroblast cells showed the strongest gene enrichments, and their marker proteins SPP1 and COL6A1 accumulated in enlarged perivascular spaces in patients with sporadic ALS. Moreover, in plasma of 574 patients with ALS from four independent cohorts, increased levels of SPP1 at disease diagnosis repeatedly predicted shorter survival with stronger effect than the established risk factors of bulbar onset or neurofilament levels in cerebrospinal fluid. We propose that the activity of the recently discovered perivascular fibroblast can predict survival of patients with ALS and provide a new conceptual framework to re-evaluate definitions of ALS etiology.
  •  
10.
  •  
11.
  • Pin, Elisa, et al. (författare)
  • Array-based profiling of proteins and autoantibody repertoires in CSF
  • 2019
  • Ingår i: Cerebrospinal Fluid (CSF) Proteomics. - New York, NY : Humana Press Inc.. ; , s. 303-318
  • Bokkapitel (refereegranskat)abstract
    • Protein profiling enabled through affinity proteomics represents a powerful strategy for analysis of complex samples such as human body fluids. Cerebrospinal fluid (CSF) is the proximal fluid of the central nervous system and is commonly analyzed in the context of neurological diseases. Through the presence of brain-derived proteins, this fluid can offer insight into the physiological state of the brain. Here, we describe multiplex and flexible protein and autoantibody profiling approaches using suspension bead arrays. Through minimal sample processing, these methods enable high-throughput analysis of hundreds of samples and proteins in one single assay and thereby provide powerful approaches for discovery of disease-associated proteins and autoantigens.
  •  
12.
  • Remnestål, Julia, et al. (författare)
  • Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers
  • Ingår i: Translational Neurodegeneration. - 2047-9158.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. The clinical presentations of frontotemporal dementia (FTD) are diverse and overlap with other neurological disorders. There are, as of today, no biomarkers in clinical practice for diagnosing the disorders. Here, we aimed to find protein markers in cerebrospinal fluid (CSF) from patients with FTD, presymptomatic mutation carriers and non-carriers.Methods. Antibody suspension bead arrays were used to analyse 328 proteins in CSF from patients with behavioural variant FTD (bvFTD, n=16) and progressive primary aphasia (PPA, n=13), as well as presymptomatic mutation carriers (PMC, n=16) and non-carriers (NC, n=8). A total of 492 antibodies were used to measure protein levels by direct labelling of the CSF samples. The findings were further examined in an independent cohort including 13 FTD patients, 79 patients with Alzheimer’s disease and 18 healthy controls.Results. We found significantly altered protein levels in CSF from FTD patients compared to unaffected individuals (PMC and NC) for 26 proteins. The analysis show patterns of separation between unaffected individuals and FTD patients, especially for those with a clinical diagnosis of bvFTD. The most statistically significant differences in protein levels were found for VGF, TN-R, NPTXR, TMEM132D, PDYN and NF-M. Patients with FTD were found to have higher levels of TN-R and NF-M, and lower levels of VGF, NPTXR, TMEM132D and PDYN, compared to unaffected individuals. The main findings were reproduced in the independent cohort.Conclusion. In this pilot study, we show a separation of FTD patients from unaffected individuals based on protein levels in CSF. Further investigation is required to explore the CSF profiles in larger cohorts, but the results presented here has the potential to enable future clinical utilization of these potential biomarkers within FTD.
  •  
13.
  • Remnestål, Julia, et al. (författare)
  • Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers
  • 2020
  • Ingår i: Translational Neurodegeneration. - : Springer Nature. - 2047-9158. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The clinical presentations of frontotemporal dementia (FTD) are diverse and overlap with other neurological disorders. There are, as of today, no biomarkers in clinical practice for diagnosing the disorders. Here, we aimed to find protein markers in cerebrospinal fluid (CSF) from patients with FTD, presymptomatic mutation carriers and non-carriers. Methods: Antibody suspension bead arrays were used to analyse 328 proteins in CSF from patients with behavioural variant FTD (bvFTD, n = 16) and progressive primary aphasia (PPA, n = 13), as well as presymptomatic mutation carriers (PMC, n = 16) and non-carriers (NC, n = 8). A total of 492 antibodies were used to measure protein levels by direct labelling of the CSF samples. The findings were further examined in an independent cohort including 13 FTD patients, 79 patients with Alzheimer's disease and 18 healthy controls. Results: We found significantly altered protein levels in CSF from FTD patients compared to unaffected individuals (PMC and NC) for 26 proteins. The analysis show patterns of separation between unaffected individuals and FTD patients, especially for those with a clinical diagnosis of bvFTD. The most statistically significant differences in protein levels were found for VGF, TN-R, NPTXR, TMEM132D, PDYN and NF-M. Patients with FTD were found to have higher levels of TN-R and NF-M, and lower levels of VGF, NPTXR, TMEM132D and PDYN, compared to unaffected individuals. The main findings were reproduced in the independent cohort. Conclusion: In this pilot study, we show a separation of FTD patients from unaffected individuals based on protein levels in CSF. Further investigation is required to explore the CSF profiles in larger cohorts, but the results presented here has the potential to enable future clinical utilization of these potential biomarkers within FTD.
  •  
14.
  • Remnestål, Julia, et al. (författare)
  • Association of CSF proteins with tau and amyloid beta levels in asymptomatic 70-year-olds
  • 2021
  • Ingår i: Alzheimer's Research & Therapy. - : BMC. - 1758-9193. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer's disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains. Methods In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology. Results The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (A beta 42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or A beta 42. Thereafter, individuals were divided based on CSF A beta 42/A beta 40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF A beta 42/A beta 40 ratio. No differences in the associations could be seen for individuals divided by CDR score. Conclusions We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins' role in AD pathophysiology.
  •  
15.
  • Remnestål, Julia, et al. (författare)
  • Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds.
  • 2021
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer's disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains.In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology.The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (Aβ42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or Aβ42. Thereafter, individuals were divided based on CSF Aβ42/Aβ40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF Aβ42/Aβ40 ratio. No differences in the associations could be seen for individuals divided by CDR score.We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins' role in AD pathophysiology.
  •  
16.
  • Remnestål, Julia, et al. (författare)
  • CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimer's disease
  • 2016
  • Ingår i: PROTEOMICS - Clinical Applications. - : Wiley-VCH Verlagsgesellschaft. - 1862-8346 .- 1862-8354. ; 10:12, s. 1242-1253
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: This study is part of a larger effort aiming to expand the knowledge of brain-enriched proteins in human cerebrospinal fluid (CSF) and to provide novel insight into the relation between such proteins and different neurodegenerative diseases. Experimental design: Here 280 brain-enriched proteins in CSF from patients with Alzheimer's disease (AD), Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are profiled. In total, 441 human samples of ventricular CSF collected post mortem and lumbar CSF collected ante mortem are analyzed using 376 antibodies in a suspension bead array setup, utilizing a direct labelling approach. Results: Among several proteins displaying differentiated profiles between sample groups, we focus here on two synaptic proteins, neuromodulin (GAP43) and neurogranin (NRGN). They are both found at elevated levels in CSF from AD patients in two independent cohorts, providing disease-associated profiles in addition to verifying and strengthening previously observed patterns. Increased levels are also observed for patients for whom the AD diagnosis was not established at the time of sampling. Conclusions and clinical relevance: These findings indicate that analyzing the brain-enriched proteins in CSF is of particular interest to increase the understanding of the CSF proteome and its relation to neurodegenerative disorders. In addition, this study lends support to the notion that measurements of these synaptic proteins could potentially be of great relevance in future diagnostic tests for AD.
  •  
17.
  • Remnestål, Julia (författare)
  • Dementia Proteomics
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The term dementia encompass a number of conditions arising as a consequence of tissue degeneration in the brain. This degeneration is caused by molecular events occurring on a cellular level including inflammation, defective waste disposal and accumulation of insoluble proteins and peptides. Many of these molecular events are in turn also reflected in the composition of the cerebrospinal fluid (CSF) which circulates within and around the brain. This thesis summarise five studies conducted with the aim to explore and profile CSF proteins in the context of dementia and other neurodegenerative disorders. Protein profiles were obtained by so-called suspension bead arrays (SBAs), created by coupling antibodies to color-coded microspheres, allowing detection of more than 350 CSF proteins simultaneously. The majority of the explored proteins are referred to as brain-enriched, entailing that the corresponding genes are highly expressed in brain tissue in comparison to other tissues. In Paper I, the SBA technology was utilised to profile about 280 proteins in CSF from several neurodegenerative disorders, i.e. Alzheimer’s disease (AD), dementia with Lewy Bodies and Parkinson’s disease. Distinct differences in the CSF proteome were identified depending on site of collection (ventricular or lumbar) and time point (post mortem or ante mortem). Disease-associated profiles for the two synaptic proteins neuromodulin (GAP43) and neurogranin (NRGN) could be confirmed, in which both proteins displayed higher levels in AD compared to controls. High levels of the two proteins were furthermore observed in patients at preclinical stages of AD in two independent cohorts. To verify the identified protein profiles, parallel reaction monitoring (PRM) assays were developed for 17 proteins in Paper II, including GAP43. Eight proteins displayed concordance to data generated with SBAs and among these were GAP43, cholecystokinin, neurofilament medium chain (NF-M), leucine-rich alpha-2-glycoprotein and vascular cell adhesion protein 1.  In Paper III, the SBA technology was again applied to characterise early dementia-related changes in the CSF proteome by comparing samples from individuals with mild cognitive impairment (MCI), controls and AD patients in two independent cohorts. The MCI individuals were moreover stratified based on CSF concentration of the core AD biomarkers Aβ42 and tau. The six proteins amphiphysin, aquaporin 4, cAMP regulated phosphoprotein 21, β-synuclein, GAP43 and NF-M did all show significant differences between sample groups in both cohorts. Further exploration of how the pathological processes preceding dementia affect the CSF proteome, was done by analysis of 104 brain-enriched proteins in CSF from asymptomatic 70 year-olds in Paper IV. Protein profiles were correlated to Aβ42, t-tau and p-tau CSF concentration, revealing a large number of proteins displaying significant correlations to tau levels. Upon dividing the asymptomatic individuals based on Aβ42 CSF pathology, some proteins showed significantly different associations in the two groups. Most of these proteins yielding interesting profiles, were plasma membrane proteins or proteins connected to synaptic vesicle transport. While AD is the most common form of dementia, accounting for more than 60 % of all cases worldwide, frontotemporal dementia (FTD) is the most frequently occurring form of young-onset dementia. In Paper V, CSF protein profiles were explored in the context of FTD. Patients with behavioural variant FTD and primary progressive aphasia, were compared to unaffected individuals with a high risk of developing FTD. Proteomic differences between patients with FTD and the unaffected individuals were observed already at a global level, and particularly for the six proteins NF-M, neurosecretory protein VGF, neuronal pentraxin receptor, prodynorphin, transmembrane protein 132D and tenascin-R. The disease-associated profiles identified in the presented studies provide a basis for future research within dementia proteomics. Whether the proteins identified will have the possibility to aid in clinical diagnosis, prognosis or characterisation of dementia, remains to be evaluated. Given the fortunate situation, especially in Sweden, with access to large and well characterised CSF collections, there are ample opportunities for future proteomic studies to elucidate the true potential of these proteins.
  •  
18.
  •  
19.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20
Typ av publikation
tidskriftsartikel (14)
annan publikation (4)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Remnestål, Julia (20)
Nilsson, Peter (19)
Månberg, Anna, 1985- (14)
Olofsson, Jennie (13)
Uhlén, Mathias (9)
Ingelsson, Martin (7)
visa fler...
Kultima, Kim (7)
Kilander, Lena (7)
Blennow, Kaj, 1958 (4)
Zetterberg, Henrik, ... (4)
Graff, Caroline (4)
Zetterberg, Henrik (4)
Svenningsson, P (3)
Lannfelt, Lars (3)
Blennow, Kaj (3)
Kern, Silke (3)
Nellgård, Bengt, 195 ... (3)
Sánchez-Valle, R (3)
Heller, C. (2)
Vandenberghe, R (2)
Schwenk, Jochen M. (2)
Tartaglia, MC (2)
Emami Khoonsari, Pay ... (2)
Shevchenko, Ganna (2)
Vandenberghe, Rik (2)
Svenningsson, Per (2)
Otto, M (2)
Zettergren, Anna (2)
Graff, C (2)
Carvalho, S. (2)
Borroni, Barbara (2)
Fredolini, Claudia (2)
Masellis, M (2)
Finger, Elizabeth (2)
Masellis, Mario (2)
Sánchez-Valle, Raque ... (2)
Markaki, I (2)
Paslawski, W (2)
Skoog, Ingmar (2)
Galimberti, Daniela (2)
van Swieten, John C (2)
Borroni, B. (2)
Galimberti, D (2)
Rohrer, JD (2)
Rowe, JB (2)
Månberg, Anna (2)
Moreno, F (2)
Ullgren, A (2)
de Mendonça, A (2)
Rohrer, Jonathan D (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (18)
Karolinska Institutet (10)
Uppsala universitet (5)
Göteborgs universitet (4)
Umeå universitet (1)
Stockholms universitet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)
Naturvetenskap (2)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy