SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ren Jingshan) "

Sökning: WFRF:(Ren Jingshan)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bollati, Michela, et al. (författare)
  • Structure and functionality in flavivirus NS-proteins : perspectives for drug design
  • 2010
  • Ingår i: Antiviral Research. - : Elsevier BV. - 0166-3542 .- 1872-9096. ; 87:2, s. 125-148
  • Forskningsöversikt (refereegranskat)abstract
    • Flaviviridae are small enveloped viruses hosting a positive-sense single-stranded RNA genome. Besides yellow fever virus, a landmark case in the history of virology, members of the Flavivirus genus, such as West Nile virus and dengue virus, are increasingly gaining attention due to their re-emergence and incidence in different areas of the world. Additional environmental and demographic considerations suggest that novel or known flaviviruses will continue to emerge in the future. Nevertheless, up to few years ago flaviviruses were considered low interest candidates for drug design. At the start of the European Union VIZIER Project, in 2004, just two crystal structures of protein domains from the flaviviral replication machinery were known. Such pioneering studies, however, indicated the flaviviral replication complex as a promising target for the development of antiviral compounds. Here we review structural and functional aspects emerging from the characterization of two main components (NS3 and NS5 proteins) of the flavivirus replication complex. Most of the reviewed results were achieved within the European Union VIZIER Project, and cover topics that span from viral genomics to structural biology and inhibition mechanisms. The ultimate aim of the reported approaches is to shed light on the design and development of antiviral drug leads.
  •  
2.
  • Gao, Jing, et al. (författare)
  • Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst
  • 2019
  • Ingår i: Joule. - : CELL PRESS. - 2542-4351. ; 3:12, s. 2930-2941
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing efficient, stable, and cost-effective photosystems to split water into hydrogen and oxygen using sunlight is of paramount importance for future production of fuels and chemicals from renewable sources. However, the high cost of current systems limits their widespread application. Here, we developed a highly efficient TiC-supported Pt nanocluster catalyst for hydrogen evolution reaction that rivals the commercial Pt/C catalyst with 5 times less Pt loading. Combining with the NiFe-layered double hydroxide for oxygen evolution reaction and driven for the first time by a monolithic perovskite/silicon tandem solar cell, we achieved a solar water splitting system with 18.7% solar-to-hydrogen conversion efficiency, setting a record for water splitting systems with earth-abundant and inexpensive photo-absorbers.
  •  
3.
  • Pan, Linfeng, et al. (författare)
  • High carrier mobility along the [111] orientation in Cu2O photoelectrodes
  • 2024
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 628:8009, s. 765-770
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3,4,5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm−2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.
  •  
4.
  • Zhu, Ling, et al. (författare)
  • Structure of Ljungan virus provides insight into genome packaging of this picornavirus
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Picornaviruses are responsible for a range of human and animal diseases, but how their RNA genome is packaged remains poorly understood. A particularly poorly studied group within this family are those that lack the internal coat protein, VP4. Here we report the atomic structure of one such virus, Ljungan virus, the type member of the genus Parechovirus B, which has been linked to diabetes and myocarditis in humans. The 3.78-angstrom resolution cryo-electron microscopy structure shows remarkable features, including an extended VP1 C terminus, forming a major protuberance on the outer surface of the virus, and a basic motif at the N terminus of VP3, binding to which orders some 12% of the viral genome. This apparently charge-driven RNA attachment suggests that this branch of the picornaviruses uses a different mechanism of genome encapsidation, perhaps explored early in the evolution of picornaviruses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy