SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renssen Hans) "

Sökning: WFRF:(Renssen Hans)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arthur, Frank, et al. (författare)
  • The impact of volcanism on Scandinavian climate and human societies during the Holocene: Insights into the Fimbulwinter eruptions (536/540 AD)
  • 2024
  • Ingår i: The Holocene. - 0959-6836 .- 1477-0911.
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent paleoclimatic research has revealed that volcanic events around 536–540 AD caused severe, short-term global cooling. For this same period, archeological research from various regions evidences significant cultural transformation. However, there is still a lack of understanding of how human societies responded and adapted to extreme climate variability and new circumstances. This study focuses on the effects of the 536/540 AD volcanic event in four Scandinavian regions by exploring the shift in demographic and land use intensity before, during, and after this abrupt climate cooling. To achieve this, we performed climate simulations with and without volcanic eruptions using a dynamically downscaled climate model (iLOVECLIM) at a high resolution (0.25° or ~25 km). We integrated the findings with a comprehensive collection of radiocarbon dates from excavated archeological sites across various Scandinavian regions. Our Earth System Model simulates pronounced cooling (maximum ensemble mean −1.1°C), an abrupt reduction in precipitation, and a particularly acute drop in growing degree days (GDD0) after the volcanic event, which can be used to infer likely impacts on agricultural productivity. When compared to the archeological record, we see considerable regional diversity in the societal response to this sudden environmental event. As a result, this study provides a more comprehensive insight into the demographic chronology of Scandinavia and a deeper understanding of the land-use practices its societies depended on during the 536/540 AD event. Our results suggest that this abrupt climate anomaly amplified a social change already in progress.
  •  
2.
  • Davies, Frazer J., et al. (författare)
  • The impact of Sahara desertification on Arctic cooling during the Holocene
  • 2015
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 11:3, s. 571-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the start of the Holocene, temperatures in the Arctic have steadily declined. This has been accredited to the orbitally forced decrease in summer insolation reconstructed over the same period. However, here we present climate modelling results from an Earth model of intermediate complexity (EMIC) that indicate that 17–40% of the cooling in the Arctic, over the period 9–0 ka, was a direct result of the desertification that occurred in the Sahara after the termination of the African Humid Period. We have performed a suite of sensitivity experiments to analyse the impact of different combinations of forcings, including various vegetation covers in the Sahara. Our simulations suggest that over the course of the Holocene, a strong increase in surface albedo in the Sahara as a result of desertification led to a regional increase in surface pressure, a weakening of the trade winds, the westerlies and the polar easterlies, which in turn reduced the meridional heat transported by the atmosphere to the Arctic. We conclude that during interglacials, the climate of the Northern Hemisphere is sensitive to changes in Sahara vegetation type.
  •  
3.
  • Fang, Keyan, et al. (författare)
  • How robust are Holocene treeline simulations? A model-data comparison in the European Arctic treeline region
  • 2013
  • Ingår i: Journal of Quaternary Science. - : Wiley. - 1099-1417 .- 0267-8179. ; 28:6, s. 595-604
  • Tidskriftsartikel (refereegranskat)abstract
    • Treeline encroachments and retractions can provide global-scale feedbacks to the climate system, and treeline dynamics are therefore of great relevance for understanding global climate variability. To assess the accuracy of long-term treeline simulations based on the generalized dynamic vegetation model LPJ-GUESS, we simulate European Arctic treeline dynamics over the past 9000 years and compare the results with fossil-based reconstructions. The results show that while LPJ-GUESS is limited in its ability to capture species-level current treeline patterns and past dynamics, it is generally able to realistically simulate the Holocene coniferous treeline changes with a cutoff biomass carbon of 2 C kg m(-2). The model captures the northward expansion of the boreal forest during the mid Holocene and correctly simulates a treeline retreat in response to climate cooling during the last 3000 years. However, there are data-simulation disagreements particularly during the early Holocene, which mainly result from the differences between the two palaeoclimate model scenarios used to drive the simulations. We suggest that the spatial accuracy of the model could be improved by incorporating the influence of topographic features, the extent of the Arctic peatlands, the tree species life-history characteristics, microclimate and other ecological factors. Copyright (c) 2013 John Wiley & Sons, Ltd.
  •  
4.
  •  
5.
  • Helmens, Karin F., et al. (författare)
  • Major cooling intersecting peak Eemian Interglacial warmth in northern Europe
  • 2015
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 122, s. 293-299
  • Tidskriftsartikel (refereegranskat)abstract
    • The degree of climate instability on the continent during the warmer-than-present Eemian Interglacial (around ca. 123 kyr ago) remains unsolved. Recently published high-resolution proxy data from the North Atlantic Ocean suggest that the Eemian was punctuated by abrupt events with reductions in North Atlantic Deep Water formation accompanied by sea-surface temperature cooling. Here we present multiproxy data at an unprecedented resolution that reveals a major cooling event intersecting peak Eemian warmth on the North European continent. Two independent temperature reconstructions based on terrestrial plants and chironomids indicate a summer cooling of the order of 2-4 degrees C. The cooling event started abruptly, had a step-wise recovery, and lasted 500-1000 yr. Our results demonstrate that the common view of relatively stable interglacial climate conditions on the continent should be revised, and that perturbations in the North Atlantic oceanic circulation under warmer-than-present interglacial conditions may also lead to abrupt and dramatic changes on the adjacent continent.
  •  
6.
  • Kageyama, Masa, et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 4 : Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 4035-4055
  • Tidskriftsartikel (refereegranskat)abstract
    • The Last Glacial Maximum (LGM, 21 000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM.
  •  
7.
  • Kuosmanen, Niina, et al. (författare)
  • The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fennoscandia
  • 2018
  • Ingår i: Journal of Vegetation Science. - : Wiley-Blackwell. - 1100-9233 .- 1654-1103. ; 29:3, s. 382-392
  • Tidskriftsartikel (refereegranskat)abstract
    • QuestionsWe investigated the changing role of climate, forest fires and human population size in the broad-scale compositional changes in Holocene vegetation dynamics before and after the onset of farming in Sweden (at 6,000cal yr BP) and in Finland (at 4,000calyr BP). LocationSouthern and central Sweden, SW and SE Finland. MethodsHolocene regional plant abundances were reconstructed using the REVEALS model on selected fossil pollen records from lakes. The relative importance of climate, fires and human population size on changes in vegetation composition was assessed using variation partitioning. Past climate variable was derived from the LOVECLIM climate model. Fire variable was reconstructed from sedimentary charcoal records. Estimated trend in human population size was based on the temporal distribution of archaeological radiocarbon dates. ResultsClimate explains the highest proportion of variation in vegetation composition during the whole study period in Sweden (10,000-4,000cal yr BP) and in Finland (10,000-1,000cal yr BP), and during the pre-agricultural period. In general, fires explain a relatively low proportion of variation. Human population size has significant effect on vegetation dynamics after the onset of farming and explains the highest variation in vegetation in S Sweden and SW Finland. ConclusionsMesolithic hunter-gatherer populations did not significantly affect vegetation composition in Fennoscandia, and climate was the main driver of changes at that time. Agricultural communities, however, had greater effect on vegetation dynamics, and the role of human population size became a more important factor during the late Holocene. Our results demonstrate that climate can be considered the main driver of long-term vegetation dynamics in Fennoscandia. However, in some regions the influence of human population size on Holocene vegetation changes exceeded that of climate and has a longevity dating to the early Neolithic.
  •  
8.
  • Li, Huan, et al. (författare)
  • Modelling the vegetation response to the 8.2 ka bp cooling event in Europe and Northern Africa
  • 2019
  • Ingår i: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 34:8, s. 650-661
  • Tidskriftsartikel (refereegranskat)abstract
    • The 8.2 ka bp cooling event is assumed to be the most clearly marked abrupt climate event in the Holocene at northern mid- to high latitudes. In this study, we simulate the vegetation responses to the 8.2 ka bp climate change event over Europe and Northern Africa. Our results show that all dominant plant functional types (PFTs) over Europe and North Africa respond to these climate changes, but the magnitude, timing and impact factor of their responses are different. Compared with pollen-based vegetation reconstructions, our simulation generally captures the main features of vegetation responses to the 8.2 ka bp event. Interestingly, in Western Europe, the simulated vegetation after perturbation is different from its initial state, which is consistent with two high-resolution pollen records. This different vegetation composition indicates the long-lasting impact of abrupt climate change on vegetation through eco-physiological and ecosystem demographic processes, such as plant competition. Moreover, our simulations suggest a latitudinal gradient in the magnitude of the event, with more pronounced vegetation responses to the severe cooling in the north and weaker responses to less severe cooling in the south. This effect is not seen in pollen records.
  •  
9.
  •  
10.
  • Muschitiello, Francesco, et al. (författare)
  • Arctic climate response to the termination of the African Humid Period
  • 2015
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 125, s. 91-97
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's climate response to the rapid vegetation collapse at the termination of the African Humid Period (AHP) (5.5-5.0 kyr BP) is still lacking a comprehensive investigation. Here we discuss the sensitivity of mid-Holocene Arctic climate to changes in albedo brought by a rapid desertification of the Sahara. By comparing a network of surface temperature reconstructions with output from a coupled global climate model, we find that, through a system of land-atmosphere feedbacks, the end of the AHP reduced the atmospheric and oceanic poleward heat transport from tropical to high northern latitudes. This entails a general weakening of the mid-latitude Westerlies, which results in a shift towards cooling over the Arctic and North Atlantic regions, and a change from positive to negative Arctic Oscillation-like conditions. This mechanism would explain the sign of rapid hydro-climatic perturbations recorded in several reconstructions from high northern latitudes at 5.5-5.0 kyr BP, suggesting that these regions are sensitive to changes in Saharan land cover during the present interglacial. This is central in the debate surrounding Arctic climate amplification and future projections for subtropical precipitation changes.
  •  
11.
  • Nikulina, Anastasia, et al. (författare)
  • Tracking Hunter-Gatherer Impact on Vegetation in Last Interglacial and Holocene Europe : Proxies and Challenges
  • 2022
  • Ingår i: Journal of archaeological method and theory. - : Springer Nature. - 1072-5369 .- 1573-7764. ; 29, s. 989-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • We review palaeoenvironmental proxies and combinations of these relevant for understanding hunter-gatherer niche construction activities in pre-agricultural Europe. Our approach consists of two steps: (1) identify the possible range of hunter-gatherer impacts on landscapes based on ethnographic studies; (2) evaluate proxies possibly reflecting these impacts for both the Eemian (Last Interglacial, Middle Palaeolithic) and the Early-Middle Holocene (Mesolithic). We found these paleoenvironmental proxies were not able to unequivocally establish clear-cut differences between specific anthropogenic, climatic and megafaunal impacts for either time period in this area. We discuss case studies for both periods and show that published evidence for Mesolithic manipulation of landscapes is based on the interpretation of comparable data as available for the Last Interglacial. If one applies the 'Mesolithic' interpretation schemes to the Neanderthal record, three common niche construction activities can be hypothesised: vegetation burning, plant manipulation and impact on animal species presence and abundance. Our review suggests that as strong a case can be made for a Neanderthal impact on landscapes as for anthropogenic landscape changes during the Mesolithic, even though the Neanderthal evidence comes from only one high-resolution site complex. Further research should include attempts (e.g. by means of modelling studies) to establish whether hunter-gatherer impact on landscapes played out at a local level only versus at a larger scale during both time periods, while we also need to obtain comparative data on the population sizes of Last Interglacial and Holocene hunter-gatherers, as these are usually inferred to have differed significantly.
  •  
12.
  • Otto-Bliesner, Bette L., et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 2 : Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 3979-4003
  • Tidskriftsartikel (refereegranskat)abstract
    • Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.
  •  
13.
  • Rea, Brice R., et al. (författare)
  • Atmospheric circulation over Europe during the Younger Dryas
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:50
  • Tidskriftsartikel (refereegranskat)abstract
    • The Younger Dryas (YD) was a period of rapid climate cooling that occurred at the end of the last glaciation. Here, we present the first palaeoglacier-derived reconstruction of YD precipitation across Europe, determined from 122 reconstructed glaciers and proxy atmospheric temperatures. Positive precipitation anomalies (YD versus modern) are found along much of the western seaboard of Europe and across the Mediterranean. Negative precipitation anomalies occur over the Fennoscandian ice sheet, the North European Plain, and as far south as the Alps. This is consistent with a more southerly and zonal storm track, which is linked to a concomitant southern location of the Polar Frontal Jet Stream, generating cold air outbreaks and enhanced cyclogenesis, especially over the eastern Mediterranean. This atmospheric configuration resembles the modern Scandinavian (SCAND) circulation over Europe (a blocking high pressure over Scandinavia pushing storm tracks south and east), and by analogy, a seasonally varying palaeoprecipitation pattern is interpreted.
  •  
14.
  • Reitalu, Triin, et al. (författare)
  • Long-term drivers of forest composition in a boreonemoral region: the relative importance of climate and human impact
  • 2013
  • Ingår i: Journal of Biogeography. - : Wiley. - 1365-2699 .- 0305-0270. ; 40:8, s. 1524-1534
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To assess statistically the relative importance of climate and human impact on forest composition in the late Holocene. Location Estonia, boreonemoral Europe. Methods Data on forest composition (10 most abundant tree and shrub taxa) for the late Holocene (5100-50 calibrated years before 1950) were derived from 18 pollen records and then transformed into land-cover estimates using the REVEALS vegetation reconstruction model. Human impact was quantified with palaeoecological estimates of openness, frequencies of hemerophilous pollen types (taxa growing in habitats influenced by human activities) and microscopic charcoal particles. Climate data generated with the ECBilt-CLIO-VECODE climate model provided summer and winter temperature data. The modelled data were supported by sedimentary stable oxygen isotope (O-18) records. Redundancy analysis (RDA), variation partitioning and linear mixed effects (LME) models were applied for statistical analyses. Results Both climate and human impact were statistically significant predictors of forest compositional change during the late Holocene. While climate exerted a dominant influence on forest composition in the beginning of the study period, human impact was the strongest driver of forest composition change in the middle of the study period, c.4000-2000years ago, when permanent agriculture became established and expanded. The late Holocene cooling negatively affected populations of nemoral deciduous taxa (Tilia, Corylus, Ulmus, Quercus, Alnus and Fraxinus), allowing boreal taxa (Betula, Salix, Picea and Pinus) to succeed. Whereas human impact has favoured populations of early-successional taxa that colonize abandoned agricultural fields (Betula, Salix, Alnus) or that can grow on less fertile soils (Pinus), it has limited taxa such as Picea that tend to grow on more mesic and fertile soils. Main conclusions Combining palaeoecological and palaeoclimatological data from multiple sources facilitates quantitative characterization of factors driving forest composition dynamics on millennial time-scales. Our results suggest that in addition to the climatic influence on forest composition, the relative abundance of individual forest taxa has been significantly influenced by human impact over the last four millennia.
  •  
15.
  • Salonen, J. Sakari, et al. (författare)
  • Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eemian (the Last Interglacial; ca. 129-116 thousand years ago) presents a testbed for assessing environmental responses and climate feedbacks under warmer-than-present boundary conditions. However, climate syntheses for the Eemian remain hampered by lack of data from the high-latitude land areas, masking the climate response and feedbacks in the Arctic. Here we present a high-resolution (sub-centennial) record of Eemian palaeoclimate from northern Finland, with multi-model reconstructions for July and January air temperature. In contrast with the mid-latitudes of Europe, our data show decoupled seasonal trends with falling July and rising January temperatures over the Eemian, due to orbital and oceanic forcings. This leads to an oceanic Late-Eemian climate, consistent with an earlier hypothesis of glacial inception in Europe. The interglacial is further intersected by two strong cooling and drying events. These abrupt events parallel shifts in marine proxy data, linked to disturbances in the North Atlantic oceanic circulation regime.
  •  
16.
  • Scussolini, Paolo, et al. (författare)
  • Agreement between reconstructed and modeled boreal precipitation of the Last Interglacial
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The last extended time period when climate may have been warmer than today was during the Last Interglacial (LIG; ca. 129 to 120 thousand years ago). However, a global view of LIG precipitation is lacking. Here, seven new LIG climate models are compared to the first global database of proxies for LIG precipitation. In this way, models are assessed in their ability to capture important hydroclimatic processes during a different climate. The models can reproduce the proxy-based positive precipitation anomalies from the preindustrial period over much of the boreal continents. Over the Southern Hemisphere, proxy-model agreement is partial. In models, LIG boreal monsoons have 42% wider area than in the preindustrial and produce 55% more precipitation and 50% more extreme precipitation. Austral monsoons are weaker. The mechanisms behind these changes are consistent with stronger summer radiative forcing over boreal high latitudes and with the associated higher temperatures during the LIG.
  •  
17.
  • Seppa, Heikki, et al. (författare)
  • Trees tracking a warmer climate: The Holocene range shift of hazel (Corylus avellana) in northern Europe
  • 2015
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 25:1, s. 53-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Palaeoecological records provide a rich source of information to explore how plant distribution ranges respond to climate changes, but their use is complicated by the fact that, especially when based on pollen data, they are often spatially too inaccurate to reliably determine past range limits. To solve this problem, we focus on hazel (Corylus avellana), a tree species with large and heavy fruits (nuts), which provide firm evidence of the local occurrence of species in the past. We combine the fossil nut records of hazel from Fennoscandia, map its maximum distribution range during the Holocene thermal maximum (HTM) and compare the fossil record with the Holocene hazel range shift as simulated by the LPJ-GUESS dynamic vegetation model. The results show that the current northern range limit of hazel in central and eastern Fennoscandia is constrained by too short growing seasons and too long and cold winters and demonstrate that the species responded to the HTM warming of about 2.5 degrees C (relative to the present) by shifting its range limit up to 63-64 degrees N, reached a rough equilibrium with the HTM climatic conditions and retreated from there to about 60 degrees N during the last 4000 years in response to the late-Holocene cooling. Thus, the projected future warming of about 2.5 degrees C would reverse the long-term southward retraction of species' northern range limit in Europe and is likely to lead to hazel being a common, regeneratively reproductive species up to 63-64 degrees N. In addition to the accuracy of the projected warming, the likelihood of this scenario will depend on inter-specific competition with other tree taxa and the potential of hazel to migrate and its population to grow in balance with the warming. In general, the range dynamics from the HTM to the present suggest a tight climatic control over hazel's range limit in Fennoscandia.
  •  
18.
  • Stokes, Chris R., et al. (författare)
  • On the reconstruction of palaeo-ice sheets : Recent advances and future challenges
  • 2015
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 125, s. 15-49
  • Forskningsöversikt (refereegranskat)abstract
    • Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-Sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus, the capability is developing to use all relevant palaeo-records to more strongly constrain deglacial (and to a lesser extent pre-LGM) ice sheet evolution. In working towards that goal, the accurate representation of uncertainties is required for both constraint data and model outputs. Close cooperation between modelling and data-gathering communities is essential to ensure this capability is realised and continues to progress.
  •  
19.
  • Strandberg, Gustav, 1977- (författare)
  • Modelling regional climate-vegetation interactions in Europe : A palaeo perspective
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Studies in paleoclimate are important because they give us knowledge about how the climate system works and puts the current climate change in necessary perspective. By studying (pre)historic periods we increase our knowledge not just about these periods, but also about the processes that are important for climatic variations and changes. This thesis deals mainly with the interaction between climate and vegetation. Vegetation changes can affect climate in many different ways. These effects can be divided into two main categories: biogeochemical and biogeophysical processes. This thesis studies the biogeophysical effects of vegetation changes on climate in climate models. Climate models are a necessary tool for investigating how climate responds to changes in the climate system, as well as for making predictions of future climate. The biogeophysical processes are strongly related to characteristics of the land surface. Vegetation changes alter the land surface’s albedo (ability to reflect incoming solar radiation), roughness and evapotranspiration (the sum of evaporation and tran-spiration), which in turn affects the energy fluxes between the land surface and the atmosphere and thereby the climate. It is not, however, evident in what way; denser vegetation (e.g. forest instead of grassland) gives decreased albedo, which results in higher temperature, but also increased evapotranspiration, which contrastingly results in lower temperature. Vegetation changes are in this thesis studied in four different (pre)historic periods: two very cold periods with no human influence (c. 44,000 and 21,000 years ago), one warm period with minor human influence (c. 6,000 years ago) and a cold period with substantial human influence (c. 200 years ago). In addition to that the present climate is studied. The combination of these periods gives an estimate of the effect of both natural and anthropogenic vegetation on climate in different climatic contexts. The results show that vegetation changes can change temperature with 1–3 °C depending on season and region. The response is not the same everywhere, but depends on local properties of the land surface. During the winter half of the year, the albedo effect is usually most important as the difference in albedo between forest and open land is very large. During the summer half of the year the evapotranspiration effect is usually most important as differences in albedo between different vegetation types are smaller. A prerequisite for differences in evapotranspiration is that there is sufficient amount of water available. In dry regions, evapotranspiration does not change much with changes in vegetation, which means that the albedo effect will dominate also in summer. The conclusion of these studies is that vegetation changes can have a considerable effect on climate, comparable to the effect of increasing amounts of greenhouse gases in scenarios of future climate. Thus, it is important to have an appropriate description of the vegetation in studies of past, present and future climate. This means that vegetation has the potential to work as a feedback mechanism to natural climatic variations, but also that man can alter climate by altering the vegetation. It also means that mankind may have influenced climate before we started to use fossil fuel. Consequently, vegetation changes can be used as a means to mitigate climate change locally.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20
Typ av publikation
tidskriftsartikel (16)
forskningsöversikt (2)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (1)
populärvet., debatt m.m. (1)
Författare/redaktör
Renssen, Hans (19)
Roche, Didier M (6)
Zhang, Qiong (4)
Seppa, Heikki (4)
Arthur, Frank (3)
Hatlestad, Kailin (3)
visa fler...
Hammarlund, Dan (2)
Miller, Paul (2)
Muschitiello, France ... (2)
Helmens, Karin F (2)
Loftsgarden, Kjetil (2)
Löwenborg, Daniel, 1 ... (2)
Solheim, Steinar (2)
Harrison, Sandy P. (2)
Luoto, Miska (1)
Wastegård, Stefan (1)
Koff, Tiiu (1)
Alenius, Teija (1)
Veski, Siim (1)
Giesecke, Thomas (1)
Phipps, Steven J. (1)
Pausata, Francesco S ... (1)
Fischer, Hubertus (1)
Björck, Svante (1)
Martinez, Alexandre (1)
Kirchner, Nina (1)
Schurgers, Guy (1)
Wohlfarth, Barbara (1)
Zhang, Xiao (1)
Miller, Paul A. (1)
Marquer, Laurent (1)
Molinari, Chiara (1)
Cronin, Thomas M. (1)
Noormets, Riko (1)
Sykes, Martin (1)
Gaillard, Marie-José ... (1)
Jakobsson, Martin (1)
Blomdin, Robin (1)
Stroeven, Arjen P. (1)
Gyllencreutz, Richar ... (1)
Lindholm, Karl-Johan ... (1)
Mazier, Florence (1)
Fang, Keyan (1)
Li, Qiang (1)
Mahowald, Natalie M. (1)
Poska, Anneli (1)
Stokes, Chris R. (1)
Margold, Martin (1)
Roberts, David H. (1)
Bjune, Anne E. (1)
visa färre...
Lärosäte
Stockholms universitet (10)
Lunds universitet (7)
Uppsala universitet (3)
Linnéuniversitetet (2)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Humaniora (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy