SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rilov G.) "

Sökning: WFRF:(Rilov G.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sarà, G., et al. (författare)
  • The Synergistic Impacts of Anthropogenic Stressors and COVID-19 on Aquaculture : A Current Global Perspective
  • 2022
  • Ingår i: Reviews in Fisheries Science & Aquaculture. - : Informa UK Limited. - 2330-8249 .- 2330-8257. ; 30:1, s. 123-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid, global spread of COVID-19, and the measures intended to limit or slow its propagation, are having major impacts on diverse sectors of society. Notably, these impacts are occurring in the context of other anthropogenic-driven threats including global climate change. Both anthropogenic stressors and the COVID-19 pandemic represent significant economic challenges to aquaculture systems across the globe, threatening the supply chain of one of the most important sources of animal protein, with potential disproportionate impacts on vulnerable communities. A web survey was conducted in 47 countries in the midst of the COVID-19 pandemic to assess how aquaculture activities have been affected by the pandemic, and to explore how these impacts compare to those from climate change. A positive correlation between the effects of the two categories of drivers was detected, but analysis suggests that the pandemic and the anthropogenic stressors affect different parts of the supply chain. The immediate measurable reported losses varied with aquaculture typology (land vs. marine, and intensive vs. extensive). A comparably lower impact on farmers reporting the use of integrated multitrophic aquaculture (IMTA) methods suggests that IMTA might enhance resilience to multiple stressors by providing different market options under the COVID-19 pandemic. Results emphasize the importance of assessing detrimental effects of COVID-19 under a multiple stressor lens, focusing on areas that have already locally experienced economic loss due to anthropogenic stressors in the last decade. Holistic policies that simultaneously address other ongoing anthropogenic stressors, rather than focusing solely on the acute impacts of COVID-19, are needed to maximize the long-term resilience of the aquaculture sector. 
  •  
2.
  • Cooke, Robert S., 1992, et al. (författare)
  • Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates
  • 2022
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 6:6, s. 684-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Diet and body mass are inextricably linked in vertebrates: while herbivores and carnivores have converged on much larger sizes, invertivores and omnivores are, on average, much smaller, leading to a roughly U-shaped relationship between body size and trophic guild. Although this U-shaped trophic-size structure is well documented in extant terrestrial mammals, whether this pattern manifests across diverse vertebrate clades and biomes is unknown. Moreover, emergence of the U-shape over geological time and future persistence are unknown. Here we compiled a comprehensive dataset of diet and body size spanning several vertebrate classes and show that the U-shaped pattern is taxonomically and biogeographically universal in modern vertebrate groups, except for marine mammals and seabirds. We further found that, for terrestrial mammals, this U-shape emerged by the Palaeocene and has thus persisted for at least 66 million years. Yet disruption of this fundamental trophic-size structure in mammals appears likely in the next century, based on projected extinctions. Actions to prevent declines in the largest animals will sustain the functioning of Earth's wild ecosystems and biomass energy distributions that have persisted through deep time. Analysis of diet and body size in terrestrial and aquatic vertebrates shows that a U-shaped relationship between body size and trophic guild prevails across extant vertebrates with the exception of marine mammals and seabirds. Analysis of fossil data shows that, for terrestrial mammals, this pattern has persisted for at least 66 million years, despite anthropogenic perturbance, which may have greater effects in the next centuries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy