SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rip Jaap) "

Sökning: WFRF:(Rip Jaap)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hu, Yang, 1989-, et al. (författare)
  • In Vivo Quantitative Understanding of PEGylated Liposome’s Influence on Brain Delivery of Diphenhydramine
  • 2018
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 15:12, s. 5493-5500
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the promising features of liposomes as brain drug delivery vehicles, it remains uncertain how they influence the brain uptake in vivo. In order to gain a better fundamental understanding of the interaction between liposomes and the blood–brain barrier (BBB), it is indispensable to test if liposomes affect drugs with different BBB transport properties (active influx or efflux) differently. The aim of this study was to quantitatively evaluate how PEGylated (PEG) liposomes influence brain delivery of diphenhydramine (DPH), a drug with active influx at the BBB, in rats. The brain uptake of DPH after 30 min intravenous infusion of free DPH, PEG liposomal DPH, or free DPH + empty PEG liposomes was compared by determining the unbound DPH concentrations in brain interstitial fluid and plasma with microdialysis. Regular blood samples were taken to measure total DPH concentrations in plasma. Free DPH was actively taken up into the brain time-dependently, with higher uptake at early time points followed by an unbound brain-to-plasma exposure ratio (Kp,uu) of 3.0. The encapsulation in PEG liposomes significantly decreased brain uptake of DPH, with a reduction of Kp,uu to 1.5 (p < 0.05). When empty PEG liposomes were coadministered with free drug, DPH brain uptake had a tendency to decrease (Kp,uu 2.3), and DPH was found to bind to the liposomes. This study showed that PEG liposomes decreased the brain delivery of DPH in a complex manner, contributing to the understanding of the intricate interactions between drug, liposomes, and the BBB.
  •  
2.
  • Hu, Yang, et al. (författare)
  • The Impact of Liposomal Formulations on the Release and Brain Delivery of Methotrexate : An In Vivo Microdialysis Study
  • 2017
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 106:9, s. 2606-2613
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of liposomal formulations on the in vivo release and brain delivery of methotrexate (MTX) was quantitatively assessed in rats. Two PEGylated liposomal MTX formulations based on hydrogenated soy phosphatidylcholine (HSPC) or egg-yolk phosphatidylcholine (EYPC) were prepared. The drug release and uptake into the brain after intravenous administration of both formulations were compared with unformulated MTX by determining the released, unbound MTX in brain and plasma using microdialysis. Total MTX concentrations in plasma were determined using regular blood sampling. The administration of both high-and low-dose EYPC liposomes resulted in 10 times higher extent of MTX release in plasma compared to that obtained from HSPC liposomes (p < 0.05). MTX itself possessed limited brain uptake with steady-state unbound brain-to-plasma concentration ratio (K-p,K-uu) of 0.10 +/- 0.06. Encapsulation in HSPC liposomes did not affect MTX brain uptake (K-p,K-uu 0.11 +/- 0.05). In contrast, EYPC liposomes significantly improved MTX brain delivery with a 3-fold increase of Kp, uu (0.28 +/- 0.14 and 0.32 +/- 0.13 for high-and low-dose EYPC liposomal MTX, respectively, p < 0.05). These results provide unique quantitative evidence that liposomal formulations based on different phospholipids can result in very different brain delivery of MTX.
  •  
3.
  • Lindqvist, Annika, et al. (författare)
  • Enhanced Brain Delivery of the Opioid Peptide DAMGO in Glutathione PEGylated Liposomes : A Microdialysis Study
  • 2013
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 10:5, s. 1533-1541
  • Tidskriftsartikel (refereegranskat)abstract
    • Glutathione PEGylated (GSH-PEG) liposomes were evaluated for their ability to enhance and prolong blood-to-brain drug delivery of the opioid peptide DAMGO (H-Tyr-d-Ala-Gly-MePhe-Gly-ol). An intravenous loading dose of DAMGO followed by a 2 h constant rate infusion was administered to rats, and after a washout period of 1 h, GSH-PEG liposomal DAMGO was administered using a similar dosing regimen. DAMGO and GSH-PEG liposomal DAMGO were also administered as a 10 min infusion to compare the disposition of the two formulations. Microdialysis made it possible to determine free DAMGO in brain and plasma, while the GSH-PEG liposomal encapsulated DAMGO was measured with regular plasma sampling. The antinociceptive effect of DAMGO was determined with the tail-flick method. All samples were analyzed using liquid chromatography–tandem mass spectrometry. The short infusion of DAMGO resulted in a fast decline of the peptide concentration in plasma with a half-life of 9.2 ± 2.1 min. Encapsulation in GSH-PEG liposomes prolonged the half-life to 6.9 ± 2.3 h. Free DAMGO entered the brain to a limited extent with a steady state ratio between unbound drug concentrations in brain interstitial fluid and in blood (Kp,uu) of 0.09 ± 0.04. GSH-PEG liposomes significantly increased the brain exposure of DAMGO to a Kp,uu of 0.21 ± 0.17 (p < 0.05). By monitoring the released, active substance in both blood and brain interstitial fluid over time, we were able to demonstrate that GSH-PEG liposomes offer a promising platform for enhancing and prolonging the delivery of drugs to the brain.
  •  
4.
  • Lindqvist, Annika, 1983-, et al. (författare)
  • In vivo Functional Evaluation of Increased Brain Delivery of the Opioid Peptide DAMGO by Glutathione-PEGylated Liposomes
  • 2016
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 33:1, s. 177-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose:The purpose of this study was to evaluate formulation factors causing improvement in brain delivery of a small peptide after encapsulation into a targeted nanocarrier in vivo.Methods:The evaluation was performed in rats using microdialysis, which enabled continuous sampling of the released drug in both the brain (striatum) and blood. Uptake in brain could thereby be studied in terms of therapeutically active, released drug.Results:We found that encapsulation of the peptide DAMGO in fast-releasing polyethylene glycol (PEG)ylated liposomes, either with or without the specific brain targeting ligand glutathione (GSH), doubled the uptake of DAMGO into the rat brain. The increased brain delivery was observed only when the drug was encapsulated into the liposomes, thus excluding any effects of the liposomes themselves on the blood-brain barrier integrity as a possible mechanism. The addition of a GSH coating on the liposomes did not result in an additional increase in DAMGO concentrations in the brain, in contrast to earlier studies on GSH coating. This may be caused by differences in the characteristics of the encapsulated compounds and the composition of the liposome formulations. Conclusions:We were able to show that encapsulation into PEGylated liposomes of a peptide with limited brain delivery could double the drug uptake into the brain without using a specific brain targeting ligand.  
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy