SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rising A.) "

Sökning: WFRF:(Rising A.)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, G., et al. (författare)
  • Abilities of the BRICHOS domain to prevent neurotoxicity and fibril formation are dependent on a highly conserved Asp residue
  • 2022
  • Ingår i: RSC Chemical Biology. - : Royal Society of Chemistry (RSC). - 2633-0679. ; 3:11, s. 1342-1358
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pKa value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations. 
  •  
2.
  • Brelsford, Christa, et al. (författare)
  • Developing a sustainability science approach for water systems
  • 2020
  • Ingår i: Ecology and Society. - 1708-3087. ; 25:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We convened a workshop to enable scientists who study water systems from both social science and physical science perspectives to develop a shared language. This shared language is necessary to bridge a divide between these disciplines’ different conceptual frameworks. As a result of this workshop, we argue that we should view socio-hydrological systems as structurally co-constituted of social, engineered, and natural elements and study the “characteristic management challenges” that emerge from this structure and reoccur across time, space, and socioeconomic contexts. This approach is in contrast to theories that view these systems as separately conceptualized natural and social domains connected by bi-directional feedbacks, as is prevalent in much of the water systems research arising from the physical sciences. A focus on emergent characteristic management challenges encourages us to go beyond searching for evidence of feedbacks and instead ask questions such as: What types of innovations have successfully been used to address these challenges? What structural components of the system affect its resilience to hydrological events and through what mechanisms? Are there differences between successful and unsuccessful strategies to solve one of the characteristic management challenges? If so, how are these differences affected by institutional structure and ecological and economic contexts? To answer these questions, social processes must now take center stage in the study and practice of water management. We also argue that water systems are an important class of coupled systems with relevance for sustainability science because they are particularly amenable to the kinds of systematic comparisons that allow knowledge to accumulate. Indeed, the characteristic management challenges we identify are few in number and recur over most of human history and in most geographical locations. This recurrence should allow us to accumulate knowledge to answer the above questions by studying the long historical record of institutional innovations to manage water systems.
  •  
3.
  •  
4.
  • Hedhammar, My, Professor, 1975-, et al. (författare)
  • Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis : implications for fiber formation
  • 2008
  • Ingår i: Journal of Biotechnology. - : American Chemical Society (ACS). - 0168-1656 .- 1873-4863. ; 47:11, s. 3407-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been established. Herein, thermal, pH, and salt effects on the structure and aggregation and/or polymerization of recombinant N- and C-terminal domains, a repetitive segment containing four poly-Ala and Gly rich coblocks, and combinations thereof were studied. The N- and C-terminal domains have mainly alpha-helical structure, and interestingly, both form homodimers. Dimerization of the end domains allows spidroin multimerization independent of the repetitive part. Reduction of an intersubunit disulfide in the C-terminal domain lowers the thermal stability but does not affect dimerization. The repetitive region shows helical secondary structure but appears to lack stable folded structure. A protein composed of this repetitive region linked to the C-terminal domain has a mainly alpha-helical folded structure but shows an abrupt transition to beta-sheet structures upon heating. At room temperature, this protein self-assembles into macroscopic fibers within minutes. The secondary structures of none of the domains are altered by pH or salt. However, high concentrations of phosphate affect the tertiary structure and accelerate the aggregation propensity of the repetitive region. Implications of these results for dragline spidroin behavior in solution and silk fiber formation are discussed.
  •  
5.
  •  
6.
  • Kaldmäe, Margit, et al. (författare)
  • A “spindle and thread” mechanism unblocks p53 translation by modulating N-terminal disorder
  • 2022
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 30:5, s. 733-742, e1-e7
  • Tidskriftsartikel (refereegranskat)abstract
    • Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of “life on the edge of solubility.” Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular “spindle and thread” mechanism unblocks protein translation in vitro.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Abelein, A, et al. (författare)
  • High-yield Production of Amyloid-β Peptide Enabled by a Customized Spider Silk Domain
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 235-
  • Tidskriftsartikel (refereegranskat)abstract
    • During storage in the silk gland, the N-terminal domain (NT) of spider silk proteins (spidroins) keeps the aggregation-prone repetitive region in solution at extreme concentrations. We observe that NTs from different spidroins have co-evolved with their respective repeat region, and now use an NT that is distantly related to previously used NTs, for efficient recombinant production of the amyloid-β peptide (Aβ) implicated in Alzheimer’s disease. A designed variant of NT from Nephila clavipes flagelliform spidroin, which in nature allows production and storage of β-hairpin repeat segments, gives exceptionally high yields of different human Aβ variants as a solubility tag. This tool enables efficient production of target peptides also in minimal medium and gives up to 10 times more isotope-labeled monomeric Aβ peptides per liter bacterial culture than previously reported.
  •  
13.
  • Askarieh, Glareh, et al. (författare)
  • Self-assembly of spider silk proteins is controlled by a pH-sensitive relay
  • 2010
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 465:7295, s. 236-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Nature's high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity. How spiders manage to avoid premature spidroin aggregation before self-assembly is not yet established. A pH drop to 6.3 along the spider's spinning apparatus, altered salt composition and shear forces are believed to trigger the conversion to solid silk, but no molecular details are known. Miniature spidroins consisting of a few repetitive spidroin segments capped by the carboxy-terminal domain form metre-long silk-like fibres irrespective of pH. We discovered that incorporation of the amino-terminal domain of major ampullate spidroin 1 from the dragline of the nursery web spider Euprosthenops australis (NT) into mini-spidroins enables immediate, charge-dependent self-assembly at pH values around 6.3, but delays aggregation above pH 7. The X-ray structure of NT, determined to 1.7 A resolution, shows a homodimer of dipolar, antiparallel five-helix bundle subunits that lack homologues. The overall dimeric structure and observed charge distribution of NT is expected to be conserved through spider evolution and in all types of spidroins. Our results indicate a relay-like mechanism through which the N-terminal domain regulates spidroin assembly by inhibiting precocious aggregation during storage, and accelerating and directing self-assembly as the pH is lowered along the spider's silk extrusion duct.
  •  
14.
  •  
15.
  • Davis, B, et al. (författare)
  • Voices of chemical biology
  • 2021
  • Ingår i: Nature chemical biology. - : Springer Science and Business Media LLC. - 1552-4469 .- 1552-4450. ; 17:1, s. 1-4
  • Tidskriftsartikel (refereegranskat)
  •  
16.
  •  
17.
  •  
18.
  • Gonska, Nathalie, et al. (författare)
  • Structure-Function Relationship of Artificial Spider Silk Fibers Produced by Straining Flow Spinning
  • 2020
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 21:6, s. 2116-2124
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of large quantities of artificial spider silk fibers that match the mechanical properties of the native material has turned out to be challenging. Recent advancements in the field make biomimetic spinning approaches an attractive way forward since they allow the spider silk proteins to assemble into the secondary, tertiary, and quaternary structures that are characteristic of the native silk fiber. Straining flow spinning (SFS) is a newly developed and versatile method that allows production under a wide range of processing conditions. Here, we use a recombinant spider silk protein that shows unprecedented water solubility and that is capable of native-like assembly, and we spin it into fibers by the SFS technique. We show that fibers may be spun using different hydrodynamical and chemical conditions and conclude that these spinning conditions affect fiber mechanics. In particular, it was found that the addition of acetonitrile and polyethylene glycol to the collection bath results in fibers with increased beta-sheet content and improved mechanical properties.
  •  
19.
  •  
20.
  • Kramer, Lilith, et al. (författare)
  • New paths for modelling freshwater nature futures
  • 2023
  • Ingår i: Sustainability Science. - 1862-4065 .- 1862-4057.
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater ecosystems are exceptionally rich in biodiversity and provide essential benefits to people. Yet they are disproportionately threatened compared to terrestrial and marine systems and remain underrepresented in the scenarios and models used for global environmental assessments. The Nature Futures Framework (NFF) has recently been proposed to advance the contribution of scenarios and models for environmental assessments. This framework places the diverse relationships between people and nature at its core, identifying three value perspectives as points of departure: Nature for Nature, Nature for Society, and Nature as Culture. We explore how the NFF may be implemented for improved assessment of freshwater ecosystems. First, we outline how the NFF and its main value perspectives can be translated to freshwater systems and explore what desirable freshwater futures would look like from each of the above perspectives. Second, we review scenario strategies and current models to examine how freshwater modelling can be linked to the NFF in terms of its aims and outcomes. In doing so, we also identify which aspects of the NFF framework are not yet captured in current freshwater models and suggest possible ways to bridge them. Our analysis provides future directions for a more holistic freshwater model and scenario development and demonstrates how society can benefit from freshwater modelling efforts that are integrated with the value-perspectives of the NFF.
  •  
21.
  •  
22.
  • Lin, CH, et al. (författare)
  • In Vitro Study of Human Immune Responses to Hyaluronic Acid Hydrogels, Recombinant Spidroins and Human Neural Progenitor Cells of Relevance to Spinal Cord Injury Repair
  • 2021
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Scaffolds of recombinant spider silk protein (spidroin) and hyaluronic acid (HA) hydrogel hold promise in combination with cell therapy for spinal cord injury. However, little is known concerning the human immune response to these biomaterials and grafted human neural stem/progenitor cells (hNPCs). Here, we analyzed short- and long-term in vitro activation of immune cells in human peripheral blood mononuclear cells (hPBMCs) cultured with/without recombinant spidroins, HA hydrogels, and/or allogeneic hNPCs to assess potential host–donor interactions. Viability, proliferation and phenotype of hPBMCs were analyzed using NucleoCounter and flow cytometry. hPBMC viability was confirmed after exposure to the different biomaterials. Short-term (15 h) co-cultures of hPBMCs with spidroins, but not with HA hydrogel, resulted in a significant increase in the proportion of activated CD69+ CD4+ T cells, CD8+ T cells, B cells and NK cells, which likely was caused by residual endotoxins from the Escherichia coli expression system. The observed spidroin-induced hPBMC activation was not altered by hNPCs. It is resource-effective to evaluate human compatibility of novel biomaterials early in development of the production process to, when necessary, make alterations to minimize rejection risk. Here, we present a method to evaluate biomaterials and hPBMC compatibility in conjunction with allogeneic human cells.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Rising, A., et al. (författare)
  • Major ampullate spidroins from Euprosthenops australis : multiplicity at protein, mRNA and gene levels
  • 2007
  • Ingår i: Insect molecular biology (Print). - : Wiley. - 0962-1075 .- 1365-2583. ; 16:5, s. 551-561
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider dragline silk possesses extraordinary mechanical properties. It consists of large fibrous proteins called spidroins that display modular structures. It is known to consist of two proteins: the major ampullate spidroin (MaSp) 1 and MaSp2. This study analyses MaSp sequences from the nursery-web spider Euprosthenops australis. We have identified a previously uncharacterized MaSp2 sequence and a new MaSp-like spidroin, which display distinct homogenous submotifs within their respective Gly-rich repeats. Furthermore, a group of MaSp1 cDNA clones show unexpected heterogeneity. Genomic PCR identified several MaSp1 gene variants within individual spiders, which suggests the presence of a gene cluster in E. australis. Finally, the evolution of spidroin genes is discussed in relation to phylogenetic analysis of nonrepetitive C-terminal domains from diverse species.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  • Stark, M., et al. (författare)
  • Macroscopic fibers self-assembled from recombinant miniature spider silk proteins
  • 2007
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 8:5, s. 1695-1701
  • Tidskriftsartikel (refereegranskat)abstract
    • Strength, elasticity, and biocompatibility make spider silk an attractive resource for the production of artificial biomaterials. Spider silk proteins, spidroins, contain hundreds of repeated poly alanine/glycine-rich blocks and are difficult to produce recombinantly in soluble form. Most previous attempts to produce artificial spider silk fibers have included solubilization steps in nonphysiological solvents. It is here demonstrated that a miniature spidroin from a protein in dragline silk of Euprosthenops australis can be produced in a soluble form in Escherichia coli when fused to a highly soluble protein partner. Although this miniature spidroin contains only four poly alanine/glycine-rich blocks followed by a C-terminal non-repetitive domain, meter-long fibers are spontaneously formed after proteolytic release of the fusion partner. The structure of the fibers is similar to that of dragline silks, and although self-assembled from recombinant proteins they are as strong as fibers spun from redissolved silk. Moreover, the fibers appear to be biocompatible because human tissue culture cells can grow on and attach to the fibers. These findings enable controlled production of high-performance biofibers at large scale under physiological conditions.
  •  
33.
  •  
34.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy