SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rissanen Ville) "

Sökning: WFRF:(Rissanen Ville)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguilar-Sanchez, Andrea, et al. (författare)
  • Charged ultrafiltration membranes based on TEMPO-oxidized cellulose nanofibrils/poly(vinyl alcohol) antifouling coating
  • 2021
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 11:12, s. 6859-6868
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports the potential of TEMPO-oxidized cellulose nanofibrils (T-CNF)/poly(vinyl alcohol) (PVA) coatings to develop functionalized membranes in the ultrafiltration regime with outstanding antifouling performance and dimensional/pH stability. PVA acts as an anchoring phase interacting with the polyethersulfone (PES) substrate and stabilizing for the hygroscopic T-CNF via crosslinking. The T-CNF/PVA coated PES membranes showed a nano-textured surface, a change in the surface charge, and improved mechanical properties compared to the original PES substrate. A low reduction (4%) in permeance was observed for the coated membranes, attributable to the nanometric coating thickness, surface charge, and hydrophilic nature of the coated layer. The coated membranes exhibited charge specific adsorption driven by electrostatic interaction combined with rejection due to size exclusion (MWCO 530 kDa that correspond to a size of similar to 35-40 nm). Furthermore, a significant reduction in organic fouling and biofouling was found for T-CNF/PVA coated membranes when exposed to BSA and E. coli. The results demonstrate the potential of simple modifications using nanocellulose to manipulate the pore structure and surface chemistry of commercially available membranes without compromising on permeability and mechanical stability.
  •  
2.
  • Almeida, Joao, et al. (författare)
  • Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 359-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4-16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
  •  
3.
  • Pöhler, Tiina, et al. (författare)
  • Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer
  • 2022
  • Ingår i: Separation and Purification Technology. - : Elsevier BV. - 1383-5866 .- 1873-3794. ; 285
  • Tidskriftsartikel (refereegranskat)abstract
    • The utilisation of plant-derived nanoscale cellulosic materials (cellulose nanofibrils, CNF) in tailoring water purification membranes is constantly gaining interest in the context of green-functionalised membrane solutions. However, most of the existing approaches based on renewable and biobased materials suffer from the lack of efficient and scalable processing strategies. Here, we introduce a roll-to-roll membrane modification approach based on thin submicron nanocellulose coatings (400–800 nm) to manufacture anti-biofouling membranes with size and charge dependent selectivity using unit operations compatible with existing industrial lines. We turned a commercial polymeric polyethersulfone (PES) microfiltration membrane into highly hydrophilic and tight membrane structure by applying thin and water-durable cellulose nanofibril layers using cast or spray coating methods. Nanocellulose coated membranes exhibited water permeance values of 80 – 100 LMH/MPa with the highest rejection levels of > 90% for Cytochrome C. Furthermore, the nanocellulose layers were able to withstand relatively high filtration pressure levels of 1 MPa, indicating that the selected procedures to improve mechanical integrity i.e. polyethylene imine-based anchoring and acid induced CNF cross-linking were successful. The coated membranes with the thinnest nanocellulose layer exhibited a molecular weight cut-off (MWCO) of 2 kDa for negatively charged polystyrene sulfonate and 14 kDa for neutral dextrane indicating charge selective behaviour. It can be concluded that our nanocellulose coated PES membranes represent nanofiltration membranes and lower boundary of ultrafiltration membranes with clear anti-biofouling performance directly evidenced via systematic bovine serum albumin (BSA) adsorption investigations. Our approach paves the way towards tunable and sustainable water treatment technologies simultaneously opening space for novel biobased solutions in membrane sector.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy