SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodet Laetitia) "

Sökning: WFRF:(Rodet Laetitia)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Calissendorff, Per, 1989-, et al. (författare)
  • Updated orbital monitoring and dynamical masses for nearby M-dwarf binaries
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Young M-type binaries are particularly useful for precise isochronal dating by taking advantage of their extended pre-main sequence evolution. Orbital monitoring of these low-mass objects becomes essential in constraining their fundamental properties, as dynamical masses can be extracted from their Keplerian motion. Here, we present the combined efforts of the AstraLux Large Multiplicity Survey, together with a filler sub-programme from the SpHere INfrared Exoplanet (SHINE) project and previously unpublished data from the FastCam lucky imaging camera at the Nordical Optical Telescope (NOT) and the NaCo instrument at the Very Large Telescope (VLT). Building on previous work, we use archival and new astrometric data to constrain orbital parameters for 20 M-type binaries. We identify that eight of the binaries have strong Bayesian probabilities and belong to known young moving groups (YMGs). We provide a first attempt at constraining orbital parameters for 14 of the binaries in our sample, with the remaining six having previously fitted orbits for which we provide additional astrometric data and updated Gaia parallaxes. The substantial orbital information built up here for four of the binaries allows for direct comparison between individual dynamical masses and theoretical masses from stellar evolutionary model isochrones, with an additional three binary systems with tentative individual dynamical mass estimates likely to be improved in the near future. We attained an overall agreement between the dynamical masses and the theoretical masses from the isochrones based on the assumed YMG age of the respective binary pair. The two systems with the best orbital constrains for which we obtained individual dynamical masses, J0728 and J2317, display higher dynamical masses than predicted by evolutionary models.
  •  
2.
  • Janson, Markus, et al. (författare)
  • A wide-orbit giant planet in the high-mass b Centauri binary system
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7888
  • Tidskriftsartikel (refereegranskat)abstract
    • Planet formation occurs around a wide range of stellar masses and stellar system architectures1. An improved understanding of the formation process can be achieved by studying it across the full parameter space, particularly towards the extremes. Earlier studies of planets in close-in orbits around high-mass stars have revealed an increase in giant planet frequency with increasing stellar mass2 until a turnover point at 1.9 solar masses (M⊙), above which the frequency rapidly decreases3. This could potentially imply that planet formation is impeded around more massive stars, and that giant planets around stars exceeding 3 M⊙ may be rare or non-existent. However, the methods used to detect planets in small orbits are insensitive to planets in wide orbits. Here we demonstrate the existence of a planet at 560 times the Sun–Earth distance from the 6- to 10-M⊙ binary b Centauri through direct imaging. The planet-to-star mass ratio of 0.10–0.17% is similar to the Jupiter–Sun ratio, but the separation of the detected planet is about 100 times wider than that of Jupiter. Our results show that planets can reside in much more massive stellar systems than what would be expected from extrapolation of previous results. The planet is unlikely to have formed in situ through the conventional core accretion mechanism4, but might have formed elsewhere and arrived to its present location through dynamical interactions, or might have formed via gravitational instability.
  •  
3.
  • Janson, Markus, et al. (författare)
  • Dynamical masses of M-dwarf binaries in young moving groups II. Toward empirical mass-luminosity isochrones
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-mass stars exhibit substantial pre-main sequence evolution during the first similar to 100 Myr of their lives. Thus, young M-type stars are prime targets for isochronal dating, especially in young moving groups (YMGs), which contain large amounts of stars in this mass and age range. If the mass and luminosity of a star can both be directly determined, this allows for a particularly robust isochronal analysis. This motivates in-depth studies of low-mass binaries with spatially resolvable orbits, where dynamical masses can be derived. Here we present the results of an observing campaign dedicated to orbital monitoring of AB Dor Ba/Bb, which is a close M-dwarf pair within the quadruple AB Dor system. We have acquired eight astrometric epochs with the SPHERE /ZIMPOL and NACO instruments, which we combine with literature data to improve the robustness and precision for the orbital characterization of the pair. We find a system mass 0.66(-0.12)(+0.12) M-circle dot and bolometric luminosities in log L/L-circle dot of 2 .02 +/- 0.02 and 2 .11 +/- 0.02 for AB Dor Ba and Bb, respectively. These measurements are combined with other YMG pairs in the literature to start building a framework of empirical isochrones in mass-luminosity space. This can be used to calibrate theoretical isochrones and to provide a model-free basis for assessing relative stellar ages. We note a tentative emerging trend where the youngest moving group members are largely consistent with theoretical expectations, while stars in older associations such as the AB Dor moving group appear to be systematically underluminous relative to isochronal expectations.
  •  
4.
  • Viswanath, Gayathri, 1992-, et al. (författare)
  • BEAST detection of a brown dwarf and a low-mass stellar companion around the young bright B star HIP 81208
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675, s. A54-A54
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations by the B-star Exoplanet Abundance Study (BEAST) illustrate the existence of substellar companions around very massive stars. Here, we present the detection of two lower mass companions to a relatively nearby (148.7−1.3+1.5 pc), young (17−4+3 Myr), bright (V = 6.632 ± 0.006 mag), 2.58 ± 0.06 M⊙ B9V star HIP 81208 residing in the Sco-Cen association using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at the Very Large Telescope (VLT) in Chile. Our analysis of the photometry obtained gives mass estimates of 67−7+6 MJ for the inner companion and 0.135−0.013+0.010 M⊙ for the outer companion, indicating that the former is most likely a brown dwarf and the latter a low-mass star. The system is compact but unusual, as the orbital planes of the two companions are likely close to orthogonal. The preliminary orbital solutions we derive for the system indicate that the star and the two companions are likely in a Kozai resonance, rendering the system dynamically very interesting for future studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy