SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodner Marius 1991 ) "

Sökning: WFRF:(Rodner Marius 1991 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Rodner, Marius, 1991-, et al. (författare)
  • A platform for extremely sensitive gas sensing : 2D materials on silicon carbide
  • 2018
  • Ingår i: TechConnect Briefs 2018 - Advanced Materials. - : TechConnect. - 9780998878232 ; , s. 101-104
  • Konferensbidrag (refereegranskat)abstract
    • 2D materials offer a unique platform for sensing with extreme sensitivity, since minimal chemical interactions cause noticeable changes in the electronic state. An area where this is particularly interesting is environmental monitoring of gases that are hazardous at trace levels. In this study, SiC is used as a base for epitaxial growth of high quality, uniform graphene, and for templated growth of atomically thin layers of platinum, with potential benefits in terms of the ability to operate at higher temperature and to serve as a more robust template for fiinctionalization compared to graphene. Fiinctionalization with nanoparticles allows tuning the sensitivity to specific molecules without damaging the 2D sensor transducer. With this platform we demonstrate detection of nitrogen dioxide, formaldehyde, and benzene at trace concentrations. This, combined with smart sensor signal evaluation allowing fast response times, could allow real-time monitoring of these toxic pollutants at concentrations of relevance to air quality monitoring.
  •  
3.
  • Rodner, Marius, 1991-, et al. (författare)
  • First-order time-derivative readout of epitaxial graphene-based gas sensors for fast analyte determination
  • 2020
  • Ingår i: Sensors and Actuators Reports. - : ELSEVIER. - 2666-0539. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • For many applications, gas sensors need to be very sensitive, selective and exhibit a good stability. Moreover, they should also be cheap and small, and allow a fast response time. Usually, sensors are optimized for specific applications with a compromise between the mentioned criteria. Here, we show a method that allows very sensitive, but rather slow, graphene metal oxide hybrid sensors to be used in a much faster and more effective way with a focus on targeting trace level concentrations of some common toxic air pollutants. By exploiting the first-order time-derivative of the measured resistance signal after a concentration step, the response peak is achieved much faster, while also being more robust against sensor exposure and relaxation times, and concomitantly maintaining the very high sensitivities inherent to graphene. We propose to use this method to generate an additional signal to allow using sensors that are normally rather slow in applications where steep concentration changes need to be detected with much faster time constants.
  •  
4.
  • Rodner, Marius, 1991- (författare)
  • Functionalized epitaxial graphene as versatile platform for air quality sensors
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented in this thesis focuses on epitaxial graphene on SiC as a platform for air quality sensors. Several approaches have been tested and evaluated to increase the sensitivity, selectivity, speed of response and stability of the sensors. The graphene surfaces have been functionalized, for example, with different metal oxide nanoparticles and nanolayers using hollow-cathode sputtering and pulsed laser deposition. The modified surfaces were investigated towards topography, integrity and chemical composition with characterization methods such as atomic force microscopy and Raman spectroscopy. Interaction energies between several analytes and nanoparticle-graphene-combinations were calculated by density functional theory to find the optimal material for specific target gases, and to verify the usefulness of this approach. The impact of environmental influences such as operating temperature, relative humidity and UV irradiation on sensing properties was investigated as well. To further enhance sensor performances, the first-order time-derivative of the sensor’s resistance was introduced to speed up sensor response and a temperature cycled operation mode was investigated towards selectivity.Applying these methods in laboratory conditions, sensors with a quantitative readout of single ppb benzene and formaldehyde were developed. These results show promise to fill the existing gap of low-cost but highly sensitive and fast gas sensors for air quality monitoring.
  •  
5.
  • Rodner, Marius, 1991-, et al. (författare)
  • Iron oxide nanoparticle decorated graphene for ultra-sensitive detection of volatile organic compounds
  • 2018
  • Ingår i: Proceedings. - Basel Switzerland : MDPI. - 2504-3900. ; 2:13
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been found that two-dimensional materials, such as graphene, can be used as remarkable gas detection platforms as even minimal chemical interactions can lead to distinct changes in electrical conductivity. In this work, epitaxially grown graphene was decorated with iron oxide nanoparticles for sensor performance tuning. This hybrid surface was used as a sensing layer to detect formaldehyde and benzene at concentrations of relevance in air quality monitoring (low parts per billion). Moreover, the time constants could be drastically reduced using a derivative sensor signal readout, allowing detection at the sampling rates desired for air quality monitoring applications.
  •  
6.
  • Rodner, Marius, 1991- (författare)
  • Towards a versatile gas sensing platform with epitaxial graphene
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented in this thesis focuses on how to utilize epitaxially grown graphene on SiC as a basis for ultra-sensitive gas sensor. Several approaches have been tested and evaluated to increase the sensitivity, selectivity, speed of response and stability and of the graphene based gas sensors with a focus on air quality monitoring applications. The graphene surfaces have been functionalized with different metal oxide nanoparticles and nanolayers using hollow-cathode sputtering and pulsed laser deposition. The modified surface was investigated towards its topography, integrity and chemical composition with characterization methods such as AFM, Raman and XPS. Moreover, the binding energy was calculated with density functional theory for benzene and formaldehyde when reacting with pristine epitaxial graphene and iron oxide nanoparticle decorated graphene to verify the usefulness of this approach. The impact of environmental influences such as operating temperature, relative humidity and UV irradiation towards sensing properties was investigated as well. To further decrease time constants, the first-order time-derivative of the sensor’s resistance is introduced as an alternative sensor signal and evaluated towards its applicability.Applying these methods in laboratory conditions, sensors with a quantitative readout of single ppb benzene and formaldehyde were developed and time constants of less than one minute could be achieved with the first-order time-derivative signal. These results show promise to fill the existing gap of low-cost but highly sensitive and fast gas sensors for air quality monitoring.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy