SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rogger M.) "

Sökning: WFRF:(Rogger M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Montanari, A., et al. (författare)
  • "Panta Rhei-Everything Flows" : Change in hydrology and society-The IAHS Scientific Decade 2013-2022
  • 2013
  • Ingår i: Hydrological Sciences Journal. - : Taylor & Francis Group. - 0262-6667 .- 2150-3435. ; 58:6, s. 1256-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • The new Scientific Decade 2013-2022 of IAHS, entitled Panta RheiEverything Flows, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013-2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes.
  •  
2.
  • McMillan, Hilary, et al. (författare)
  • Panta Rhei 2013-2015 : global perspectives on hydrology, society and change
  • 2016
  • Ingår i: Hydrological Sciences Journal. - : Taylor & Francis Group. - 0262-6667 .- 2150-3435. ; 61:7, s. 1174-1191
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2013, the International Association of Hydrological Sciences (IAHS) launched the hydrological decade 2013-2022 with the theme "Panta Rhei: Change in Hydrology and Society". The decade recognizes the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This paper reports on the first Panta Rhei biennium 2013-2015, providing a comprehensive resource that describes the scope and direction of Panta Rhei. We bring together the knowledge of all the Panta Rhei working groups, to summarize the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in the current era of human impacts and environmental change. Finally, we look back to the six driving science questions identified at the outset of Panta Rhei, to quantify progress towards those aims.
  •  
3.
  • Wadnerkar, Praktan D., et al. (författare)
  • Land use and episodic rainfall as drivers of nitrogen exports in subtropical rivers: Insights from δ15N-NO3−, δ18O-NO3− and 222Rn
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 758
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Elsevier B.V. Ongoing land-use intensification in subtropical catchments is expected to release more inorganic nitrogen to downstream coastal waters similar to historical changes in temperate ecosystems. Here, we examined spatial and temporal drivers of stream nitrogen loads across a subtropical land-use gradient using the isotopic compositions of nitrate (NO3−-N) and radon (222Rn), a natural groundwater tracer. We investigated eleven subtropical creeks/rivers over contrasting hydrological conditions in Australia. NOx-N (nitrite (NO2−-N) + nitrate (NO3−-N)) accounted for 13.1%, 34.0%, and 42.6% of total dissolved nitrogen (TDN-N) in forest, peri-urban and agricultural creeks, respectively. Following an 80 mm rain event, loads of dissolved inorganic nitrogen (DIN-N) from agriculture catchments reached 368 mg N m−2 catchment area day−1. Forest and peri-urban catchments had aquatic TDN-N loads 17.8% and 31.1% of loads from agricultural catchments. Radon observations suggest that nitrogen and phosphorus loads were driven primarily by surface runoff rather than groundwater discharge. The δ15N-NO3− and δ18O-NO3− values in the agriculture, forest and peri-urban catchments indicate fertilisers and soil nitrogen as the main sources of NO3−-N. However, one of the catchments (Double Crossing Creek) received a mixture of recirculated greywater and chemical nitrogen fertilisers. Isotopic signatures imply significant NO3−-N losses via denitrification during dry conditions. Groundwater discharge played a minor role because regional aquifers were not contaminated by nitrogen. Overall, intensive agricultural land use and episodic rainfall events were the major spatial and temporal drivers of nitrogen loads.
  •  
4.
  • Xiao, Kai, et al. (författare)
  • Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration
  • 2021
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; 66:1, s. 14-29
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Association for the Sciences of Limnology and Oceanography Abundant crab burrows in carbon-rich, muddy salt marsh soils act as preferential water flow conduits, potentially enhancing carbon transport across the soil–water interface. With increasing recognition of blue carbon systems (salt marshes, mangroves, and seagrass) as hotspots of soil carbon sequestration, it is important to understand drivers of soil carbon cycling and fluxes. We conducted field observations and flow modeling to assess how crab burrows drive carbon exchange over time scales of minutes to weeks in an intertidal marsh in South Carolina. Results showed that continuous advective porewater exchange between the crab burrows and the surrounding soil matrix occurs because of tidally driven hydraulic gradients. The concentrations of dissolved inorganic (DIC) and organic (DOC) carbon in crab burrow porewater differ with that in the surrounding soil matrix, implying a diffusive C flux in the low-permeability marsh soil. Gas-phase concentrations of CO2 in ∼ 300 crab burrows were approximately six times greater than ambient air. The estimated total C export rate via porewater exchange (1.0 ± 0.7 g C m−2 d−1) was much greater than via passive diffusion transport (6.7 ± 2 mg C m−2 d−1) and gas-phase CO2 release (1.8 mg C m−2 d−1). The burrow-related carbon export was comparable to the regional salt marsh DIC export, groundwater-derived DIC export, and the net primary production previously estimated using ecosystem-scale approaches. These insights reveal how crab burrows modify blue carbon sequestration in salt marshes and contribute to coastal carbon budgets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy