SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Romu Thobias) "

Sökning: WFRF:(Romu Thobias)

  • Resultat 1-50 av 58
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Annelie, et al. (författare)
  • Dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment in vivo
  • 2016
  • Ingår i: Oncoimmunology. - : TAYLOR & FRANCIS INC. - 2162-4011 .- 2162-402X. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation is one of the hallmarks of carcinogenesis. High mammographic density has been associated with increased risk of breast cancer but the mechanisms behind are poorly understood. We evaluated whether breasts with different mammographic densities exhibited differences in the inflammatory microenvironment.Postmenopausal women attending the mammography-screening program were assessed having extreme dense, n = 20, or entirely fatty breasts (nondense), n = 19, on their regular mammograms. Thereafter, the women were invited for magnetic resonance imaging (MRI), microdialysis for the collection of extracellular molecules in situ and a core tissue biopsy for research purposes. On the MRI, lean tissue fraction (LTF) was calculated for a continuous measurement of breast density. LTF confirmed the selection from the mammograms and gave a continuous measurement of breast density. Microdialysis revealed significantly increased extracellular in vivo levels of IL-6, IL-8, vascular endothelial growth factor, and CCL5 in dense breast tissue as compared with nondense breasts. Moreover, the ratio IL-1Ra/IL-1 was decreased in dense breasts. No differences were found in levels of IL-1, IL-1Ra, CCL2, leptin, adiponectin, or leptin:adiponectin ratio between the two breast tissue types. Significant positive correlations between LTF and the pro-inflammatory cytokines as well as between the cytokines were detected. Stainings of the core biopsies exhibited increased levels of immune cells in dense breast tissue.Our data show that dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment and, if confirmed in a larger cohort, suggests novel targets for prevention therapies for women with dense breast tissue.
  •  
2.
  • Agebratt, Christian, et al. (författare)
  • A Randomized Study of the Effects of Additional Fruit and Nuts Consumption on Hepatic Fat Content, Cardiovascular Risk Factors and Basal Metabolic Rate
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:1, s. e0147149-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundFruit has since long been advocated as a healthy source of many nutrients, however, the high content of sugars in fruit might be a concern.ObjectivesTo study effects of an increased fruit intake compared with similar amount of extra calories from nuts in humans.MethodsThirty healthy non-obese participants were randomized to either supplement the diet with fruits or nuts, each at +7 kcal/kg bodyweight/day for two months. Major endpoints were change of hepatic fat content (HFC, by magnetic resonance imaging, MRI), basal metabolic rate (BMR, with indirect calorimetry) and cardiovascular risk markers.ResultsWeight gain was numerically similar in both groups although only statistically significant in the group randomized to nuts (fruit: from 22.15±1.61 kg/m2 to 22.30±1.7 kg/m2, p = 0.24 nuts: from 22.54±2.26 kg/m2 to 22.73±2.28 kg/m2, p = 0.045). On the other hand BMR increased in the nut group only (p = 0.028). Only the nut group reported a net increase of calories (from 2519±721 kcal/day to 2763±595 kcal/day, p = 0.035) according to 3-day food registrations. Despite an almost three-fold reported increased fructose-intake in the fruit group (from 9.1±6.0 gram/day to 25.6±9.6 gram/day, p<0.0001, nuts: from 12.4±5.7 gram/day to 6.5±5.3 gram/day, p = 0.007) there was no change of HFC. The numerical increase in fasting insulin was statistical significant only in the fruit group (from 7.73±3.1 pmol/l to 8.81±2.9 pmol/l, p = 0.018, nuts: from 7.29±2.9 pmol/l to 8.62±3.0 pmol/l, p = 0.14). Levels of vitamin C increased in both groups while α-tocopherol/cholesterol-ratio increased only in the fruit group.ConclusionsAlthough BMR increased in the nut-group only this was not linked with differences in weight gain between groups which potentially could be explained by the lack of reported net caloric increase in the fruit group. In healthy non-obese individuals an increased fruit intake seems safe from cardiovascular risk perspective, including measurement of HFC by MRI.
  •  
3.
  • Andersson, Thord, et al. (författare)
  • Consistent intensity inhomogeneity correction in water-fat MRI
  • 2015
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley-Blackwell. - 1053-1807 .- 1522-2586. ; 42:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To quantitatively and qualitatively evaluate the water-signal performance of the consistent intensity inhomogeneity correction (CIIC) method to correct for intensity inhomogeneitiesMETHODS: Water-fat volumes were acquired using 1.5 Tesla (T) and 3.0T symmetrically sampled 2-point Dixon three-dimensional MRI. Two datasets: (i) 10 muscle tissue regions of interest (ROIs) from 10 subjects acquired with both 1.5T and 3.0T whole-body MRI. (ii) Seven liver tissue ROIs from 36 patients imaged using 1.5T MRI at six time points after Gd-EOB-DTPA injection. The performance of CIIC was evaluated quantitatively by analyzing its impact on the dispersion and bias of the water image ROI intensities, and qualitatively using side-by-side image comparisons.RESULTS: CIIC significantly ( P1.5T≤2.3×10-4,P3.0T≤1.0×10-6) decreased the nonphysiological intensity variance while preserving the average intensity levels. The side-by-side comparisons showed improved intensity consistency ( Pint⁡≤10-6) while not introducing artifacts ( Part=0.024) nor changed appearances ( Papp≤10-6).CONCLUSION: CIIC improves the spatiotemporal intensity consistency in regions of a homogenous tissue type.
  •  
4.
  •  
5.
  • Borga, Magnus, 1965-, et al. (författare)
  • Advanced body composition assessment: From body mass index to body composition profiling
  • 2018
  • Ingår i: Journal of Investigative Medicine. - : BMJ Publishing Group Ltd. - 1081-5589 .- 1708-8267. ; 66:5, s. 887-895
  • Forskningsöversikt (refereegranskat)abstract
    • This paper gives a brief overview of common non-invasive techniques for body composition analysis and a more in-depth review of a body composition assessment method based on fat-referenced quantitative magnetic resonance imaging (MRI). Earlier published studies of this method are summarized, and a previously un-published validation study, based on 4.753 subjects from the UK Biobank imaging cohort, comparing the quantitative MRI method with dual-energy x-ray absorptiometry (DXA) is presented. For whole-body measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRI show excellent agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 % and 4.6 % for fat (computed from AT) and lean tissue respectively, but the agreement was found significantly lower for visceral adipose tissue, with a CV of more than 20 %. The additional ability of MRI to also measure muscle volumes, muscle AT infiltration and ectopic fat in combination with rapid scanning protocols and efficient image analysis tools make quantitative MRI a powerful tool for advanced body composition assessment. 
  •  
6.
  •  
7.
  • Borga, Magnus, et al. (författare)
  • Reproducibility and repeatability of MRI-based body composition analysis
  • 2020
  • Ingår i: Magnetic Resonance in Medicine. - : WILEY. - 0740-3194 .- 1522-2594. ; 84:6, s. 3146-3156
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose There is an absence of reproducibility studies on MRI-based body composition analysis in current literature. Therefore, the aim of this study was to investigate the between-scanner reproducibility and the repeatability of a method for MRI-based body composition analysis. Methods Eighteen healthy volunteers of varying body mass index and adiposity were each scanned twice on five different 1.5T and 3T scanners from three different vendors. Two-point Dixon neck-to knee images and two additional liver scans were acquired with similar protocols. Visceral adipose tissue (VAT) volume, abdominal subcutaneous adipose tissue (ASAT) volume, thigh muscle volume, and muscle fat infiltration (MFI) in the thigh muscle were measured. Liver proton density fat fraction (PDFF) was assessed using two different methods, the scanner vendors 6-point method and an in-house 2-point method. Within-scanner test-retest repeatability and between-scanner reproducibility were calculated using analysis of variance. Results Repeatability coefficients were 13 centiliters (cl) (VAT), 24 cl (ASAT), 17 cl (total thigh muscle volume), 0.53% (MFI), and 1.27-1.37% for liver PDFF. Reproducibility coefficients were 24 cl (VAT), 42 cl (ASAT), 31 cl (total thigh muscle volume), 1.44% (MFI), and 2.37-2.40% for liver PDFF. Conclusion For all measures except MFI, the within-scanner repeatability explained much of the overall reproducibility. The two methods for measuring liver fat had similar reproducibility. This study showed that the investigated method eliminates effects due to scanner differences. The results can be used for power calculations in clinical studies or to better understand the scanner-induced variability in clinical applications.
  •  
8.
  • Borga, Magnus, et al. (författare)
  • Validation of a Fast Method for Quantification of Intra-abdominal and Subcutaneous Adipose Tissue for Large Scale Human Studies
  • 2015
  • Ingår i: NMR in Biomedicine. - : John Wiley & Sons. - 1099-1492 .- 0952-3480. ; 28:12, s. 1747-1753
  • Tidskriftsartikel (refereegranskat)abstract
    • Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such as magnetic resonance imaging (MRI) has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles for the use of MRI in large scale studies. In this study we assess the validity of the recently proposed fat-muscle-quantitation-system (AMRATM Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images.  Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using SliceOmatic, the current gold-standard, and the AMRATM Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by both analysis methods, (Pearson correlation r = 0.97 p<0.001), with the AMRATM Profiler analysis being significantly faster (~3 mins) than the conventional SliceOmatic approach (~40 mins). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 ± 1.99 vs SliceOmatic 4.73 ± 1.75 litres, p=0.97). For the AMRATM Profiler analysis, the intra-observer coefficient of variation was 1.6 % for IAAT and 1.1 % for ASAT, the inter-observer coefficient of variation was 1.4 % for IAAT and 1.2 % for ASAT, the intra-observer correlation was 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility of large-scale human phenotypic studies.
  •  
9.
  •  
10.
  •  
11.
  • Deb, Suryyani, et al. (författare)
  • Self-Reporting Theranostic : Nano Tool for Arterial Thrombosis
  • 2023
  • Ingår i: Bioengineering. - : MDPI. - 2306-5354. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Arterial thrombosis (AT) originates through platelet-mediated thrombus formation in the blood vessel and can lead to heart attack, stroke, and peripheral vascular diseases. Restricting the thrombus growth and its simultaneous monitoring by visualisation is an unmet clinical need for a better AT prognosis. As a proof-of-concept, we have engineered a nanoparticle-based theranostic (combined therapy and monitoring) platform that has the potential to monitor and restrain the growth of a thrombus concurrently. The theranostic nanotool is fabricated using biocompatible super-paramagnetic iron oxide nanoparticles (SPIONs) as a core module tethered with the anti-platelet agent Abciximab (ReoPro) on its surface. Our in vitro feasibility results indicate that ReoPro-conjugated SPIONS (Tx@ReoPro) can effectively prevent thrombus growth by inhibiting fibrinogen receptors (GPIIbIIIa) on the platelet surface, and simultaneously, it can also be visible through non-invasive magnetic resonance imaging (MRI) for potential reporting of the real-time thrombus status.
  •  
12.
  • Forsgren, Mikael, et al. (författare)
  • Model-inferred mechanisms of liver function from magnetic resonance imaging data : Validation and variation across a clinically relevant cohort
  • 2019
  • Ingår i: PloS Computational Biology. - San Francisco, CA, United States : Public Library of Science. - 1553-734X .- 1553-7358. ; 15:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images.Author summaryBeing able to accurately and reliably estimate liver function is important when monitoring the progression of patients with liver disease, as well as when identifying drug-induced liver injury during drug development. A promising method for quantifying liver function is to use magnetic resonance imaging combined with gadoxetate. Gadoxetate is a liver-specific contrast agent, which is taken up by the hepatocytes and excreted into the bile. We have previously developed a mechanistic model for gadoxetate dynamics using averaged data from healthy volunteers. In this work, we extended our model with a non-linear mixed-effects modeling framework to give patient-specific estimates of the gadoxetate transport-rates. We validated the model by recruiting 100 patients with liver disease, covering a range of severity and etiologies. All patients underwent an MRI-examination and provided both blood and liver biopsies. Our validated model provides a new and deeper look into how the mechanisms of liver function varies across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate.
  •  
13.
  • Haufe, William, et al. (författare)
  • Feasibility of an automated tissue segmentation technique in a longitudinal weight loss study
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • To address the problems inherent in manual methods, a novel, semi-automated tissue segmentation image analysis technique has been developed. The purpose of this study was to demonstrate the feasibility and describe preliminary observations of applying this technique to quantify and monitor longitudinal changes in abdominal adipose tissue and thigh muscle volume in obese adults during weight loss. Abdominal adipose tissue and thigh muscle volume decreased during weight loss. As a proportion of body weight, adipose tissue volumes decreased during weight loss. By comparison, as a proportion of body weight, thigh muscle volume increased.
  •  
14.
  • Karlsson, Anette, et al. (författare)
  • An Investigation of Fat Infiltration of the Multifidus Muscle in Patients With Severe Neck Symptoms Associated With Chronic Whiplash-Associated Disorder
  • 2016
  • Ingår i: Journal of Orthopaedic and Sports Physical Therapy. - : Journal of Orthopaedic & Sports Physical Therapy (JOSPT). - 0190-6011 .- 1938-1344. ; 46:10, s. 886-893
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY DESIGN: Cross-sectional study. BACKGROUND: Findings of fat infiltration in cervical spine multifidus, as a sign of degenerative morphometric changes due to whiplash injury, need to be verified. OBJECTIVES: To develop a method using water/fat magnetic resonance imaging (MRI) to investigate fat infiltration and cross-sectional area of multifidus muscle in individuals with whiplash associated disorders (WADS) compared to healthy controls. METHODS: Fat infiltration and cross-sectional area in the multifidus muscles spanning the C4 to C7 segmental levels were investigated by manual segmentation using water/fat-separated MRI in 31 participants with WAD and 31 controls, matched for age and sex. RESULTS: Based on average values for data spanning C4 to C7, participants with severe disability related to WAD had 38% greater muscular fat infiltration compared to healthy controls (P = .03) and 45% greater fat infiltration compared to those with mild to moderate disability related to WAD (P = .02). There were no significant differences between those with mild to moderate disability and healthy controls. No significant differences between groups were found for multifidus cross-sectional area. Significant differences were observed for both cross-sectional area and fat infiltration between segmental levels. CONCLUSION: Participants with severe disability after a whiplash injury had higher fat infiltration in the multifidus compared to controls and to those with mild/moderate disability secondary to WAD. Earlier reported findings using T1-weighted MRI were reproduced using refined imaging technology. The results of the study also indicate a risk when segmenting single cross-sectional slices, as both cross-sectional area and fat infiltration differ between cervical levels.
  •  
15.
  •  
16.
  •  
17.
  • Karlsson, Anette, et al. (författare)
  • Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water–fat MRI
  • 2015
  • Ingår i: Journal of Magnetic Resonance Imaging. - : John Wiley & Sons. - 1053-1807 .- 1522-2586. ; 41:6, s. 1558-1569
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo develop and demonstrate a rapid whole-body magnetic resonance imaging (MRI) method for automatic quantification of total and regional skeletal muscle volume.Materials and MethodsThe method was based on a multi-atlas segmentation of intensity corrected water–fat separated image volumes. Automatic lean muscle tissue segmentations were achieved by nonrigid registration of atlas datasets with 10 different manually segmented muscle groups. Ten subjects scanned at 1.5 T and 3.0 T were used as atlases, initial validation and optimization. Further validation used 11 subjects scanned at 3.0 T. The automated and manual segmentations were compared using intraclass correlation, true positive volume fractions, and delta volumes.ResultsFor the 1.5 T datasets, the intraclass correlation, true positive volume fractions (mean ± standard deviation, SD), and delta volumes (mean ± SD) were 0.99, 0.91 ± 0.02, −0.10 ± 0.70L (whole body), 0.99, 0.93 ± 0.02, 0.01 ± 0.07L (left anterior thigh), and 0.98, 0.80 ± 0.07, −0.08 ± 0.15L (left abdomen). The corresponding values at 3.0 T were 0.97, 0.92 ± 0.03, −0.17 ± 1.37L (whole body), 0.99, 0.93 ± 0.03, 0.03 ± 0.08L (left anterior thigh), and 0.89, 0.90 ± 0.04, −0.03 ± 0.42L (left abdomen). The validation datasets showed similar results.ConclusionThe method accurately quantified the whole-body skeletal muscle volume and the volume of separate muscle groups independent of field strength and image resolution. 
  •  
18.
  • Karlsson, Anette, et al. (författare)
  • Automatic and Quantitative Assessment of Total and Regional Muscle Tissue Volume using Multi-Atlas Segmentation
  • 2014
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Accurate and precise assessment of human muscle tissue is important for further understanding of different muscle diseases and syndromes. We present a rapid whole body MR method for automatic quantification of total and regional muscle volume. The method is based on multi-atlas segmentation of intensity corrected water-fat separated images. The method was validated with a leave-one-out approach, using manually segmented atlases from 10 subjects as ground truth. The result gave a coefficient of variation on total muscle volume equal to 1.25±1.35 % (mean ± standard deviation). The method enables cost-efficient large-scale studies, investigating conditions such as sarcopenia and muscular dystrophies.
  •  
19.
  • Karlsson, Anette, 1986-, et al. (författare)
  • The effect on precision and T1 bias comparing two flip angles when estimating muscle fat infiltration using fat-referenced chemical shift-encoded imaging
  • 2021
  • Ingår i: NMR in Biomedicine. - : John Wiley & Sons. - 0952-3480 .- 1099-1492. ; 34:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigation of the effect on accuracy and precision of different parameter settings is important for quantitative Magnetic Resonance Imaging. The purpose of this study was to investigate T1-bias and precision for muscle fat infiltration (MFI) using fat-referenced chemical shift magnetic resonance imaging at 5° and 10° flip angle. This [MB1] experimental study was done on forty postmenopausal women using 3T MRI test and retest images using 4-point 3D spoiled gradient multi-echo acquisition including real and imaginary images for reconstruction acquired at Flip angles 5° and 10°. Post-processing included T2* correction and fat-referenced calibration of the fat signal. The mean MFI was calculated in six different automatically segmented muscle regions using both the fat-referenced fat signal and the fat fraction calculated from the fat and water image pair for each acquisition. The variance of the difference between mean MFI from test and retest was used as measure of precision. The SNR characteristics were analyzed by measuring difference of the full width half maximum of the fat signal distribution using Student’s t-test.There was no difference in the mean fat-referenced MFI at different flip angles with the fat-referenced technique, which was the case using the fat fraction. No significant difference in the precision was found in any of the muscles analyzed. However, the full width half maximum of the fat signal distribution was significantly lower at 10° flip angle compared to 5°. Fat-referenced MFI is insensitive to T1 bias in chemical shift magnetic resonance imaging enabling usage of a higher and more SNR effective flip angle. The lower full-width-at half-maximum in fat-referenced MFI at 10° indicates that high flip angle acquisition is advantageous although no significant differences in precision was observed comparing 5° and 10°.
  •  
20.
  • Karlsson, Anette, 1986-, et al. (författare)
  • The relation between local and distal muscle fat infiltration in chronic whiplash using magnetic resonance imaging.
  • 2019
  • Ingår i: PLOS ONE. - San Francisco, CA, United States : Public Library of Science. - 1932-6203. ; 14:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was to investigate the relationship between fat infiltration in the cervical multifidi and fat infiltration measured in the lower extremities to move further into understanding the complex signs and symptoms arising from a whiplash trauma. Thirty-one individuals with chronic whiplash associated disorders, stratified into a mild/moderate group and a severe group, together with 31 age- and gender matched controls were enrolled in this study. Magnetic resonance imaging was used to acquire a 3D volume of the neck and of the whole-body. Cervical multifidi was used to represent muscles local to the whiplash trauma and all muscles below the hip joint, the lower extremities, were representing widespread muscles distal to the site of the trauma. The fat infiltration was determined by fat fraction in the segmented images. There was a linear correlation between local and distal muscle fat infiltration (p<0.001, r2 = 0.28). The correlation remained significant when adjusting for age and WAD group (p = 0.009) as well as when correcting for age, WAD group and BMI (p = 0.002). There was a correlation between local and distal muscle fat infiltration within the severe WAD group (p = 0.0016, r2 = 0.69) and in the healthy group (p = 0.022, r2 = 0.17) but not in the mild/moderate group (p = 0.29, r2 = 0.06). No significant differences (p = 0.11) in the lower extremities' MFI between the different groups were found. The absence of differences between the groups in terms of lower extremities' muscle fat infiltration indicates that, in this particular population, the whiplash trauma has a local effect on muscle fat infiltration rather than a generalized.
  •  
21.
  •  
22.
  • Karlsson, Markus, et al. (författare)
  • Assessing Tissue Hydration Dynamics Based on Water/Fat Separated MRI
  • 2023
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 58:2, s. 652-660
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Optimal fluid status is an important issue in hemodialysis. Clinical evaluation of volume status and different diagnostic tools are used to determine hydration status in these patients. However, there is still no accurate method for this assessment. Purpose: To propose and evaluate relative lean water signal (LWSrel) as a water–fat MRI-based tissue hydration measurement. Study Type: Prospective. Population: A total of 16 healthy subjects (56 ± 6 years, 0 male) and 11 dialysis patients (60.3 ± 12.3 years, 9 male; dialysis time per week 15 ± 3.5 hours, dialysis duration 31.4 ± 27.9 months). Field Strength/Sequence: A 3 T; 3D spoiled gradient echo. Assessment: LWSrel, a measurement of the water concentration of tissue, was estimated from fat-referenced MR images. Segmentations of total adipose tissue as well as thigh and calf muscles were used to measure LWSrel and tissue volumes. LWSrel was compared between healthy subjects and dialysis patients, the latter before and after dialysis. Bioimpedance-based body composition monitor over hydration (BCM OH) was also measured. Statistical Tests: T-tests were used to compare differences between the healthy subjects and dialysis patients, as well as changes between before and after dialysis. Pearson correlation was calculated between MRI and non-MRI biomarkers. A P value <0.05 was considered statistically significant. Results: The LWSrel in adipose tissue was significantly higher in the dialysis cohort compared with the healthy cohort (246.8% ± 60.0% vs. 100.0% ± 10.8%) and decreased significantly after dialysis (246.8 ± 60.0% vs. 233.8 ± 63.4%). Thigh and calf muscle volumes also significantly decreased by 3.78% ± 1.73% and 2.02% ± 2.50% after dialysis. There was a significant correlation between changes in adipose tissue LWSrel and ultrafiltration volume (r = 87), as well as with BCM OH (r = 0.66). Data Conclusion: MRI-based LWSrel and tissue volume measurements are sensitive to tissue hydration changes occurring during dialysis. Evidence Level: 2. Technical Efficacy: Stage 3.
  •  
23.
  • Lidell, Martin, 1970, et al. (författare)
  • Evidence for two types of brown adipose tissue in humans
  • 2013
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 19:5, s. 631-634
  • Tidskriftsartikel (refereegranskat)abstract
    • The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was
  •  
24.
  • Linge, Jennifer, et al. (författare)
  • Body Composition Profiling in the UK Biobank Imaging Study
  • 2018
  • Ingår i: Obesity. - : WILEY. - 1930-7381 .- 1930-739X. ; 26:11, s. 1785-1795
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveMethodsThis study aimed to investigate the value of imaging-based multivariable body composition profiling by describing its association with coronary heart disease (CHD), type 2 diabetes (T2D), and metabolic health on individual and population levels. The first 6,021 participants scanned by UK Biobank were included. Body composition profiles (BCPs) were calculated, including abdominal subcutaneous adipose tissue, visceral adipose tissue (VAT), thigh muscle volume, liver fat, and muscle fat infiltration (MFI), determined using magnetic resonance imaging. Associations between BCP and metabolic status were investigated using matching procedures and multivariable statistical modeling. ResultsConclusionsMatched control analysis showed that higher VAT and MFI were associated with CHD and T2D (Pamp;lt;0.001). Higher liver fat was associated with T2D (Pamp;lt;0.001) and lower liver fat with CHD (Pamp;lt;0.05), matching on VAT. Multivariable modeling showed that lower VAT and MFI were associated with metabolic health (Pamp;lt;0.001), and liver fat was nonsignificant. Associations remained significant adjusting for sex, age, BMI, alcohol, smoking, and physical activity. Body composition profiling enabled an intuitive visualization of body composition and showed the complexity of associations between fat distribution and metabolic status, stressing the importance of a multivariable approach. Different diseases were linked to different BCPs, which could not be described by a single fat compartment alone.
  •  
25.
  •  
26.
  • Mandic, Mirko, et al. (författare)
  • Interval-induced metabolic perturbation determines tissue fluid shifts into skeletal muscle
  • 2021
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense interval exercise has proven to be as effective as traditional endurance exercise in improving maximal oxygen uptake. Shared by these two exercise regimes is an acute reduction in plasma volume, which is a suggested stimulus behind exercise-induced increases in blood volume and maximal oxygen uptake. This study aimed to link exercise-induced metabolic perturbation with volume shifts into skeletal muscle tissue. Ten healthy subjects (mean age 33 +/- 8 years, 5 males and 5 females) performed three 30 s all-out sprints on a cycle ergometer. Upon cessation of exercise magnetic resonance imaging, (31)Phosphorus magnetic resonance spectroscopy and blood samples were used to measure changes in muscle volume, intramuscular energy metabolites and plasma volume. Compared to pre-exercise, muscle volume increased from 1147.1 +/- 35.6 ml to 1283.3 +/- 11.0 ml 8 min post-exercise. At 30 min post-exercise, muscle volume was still higher than pre-exercise (1147.1 +/- 35.6 vs. 1222.2 +/- 6.8 ml). Plasma volume decreased by 16 +/- 3% immediately post-exercise and recovered back to - 5 +/- 6% after 30 min. Principal component analysis of exercise performance, muscle and plasma volume changes as well as changes in intramuscular energy metabolites showed generally strong correlations between metabolic and physiological variables. The strongest predictor for the volume shifts of muscle and plasma was the magnitude of glucose-6-phosphate accumulation post-exercise. Interval training leads to large metabolic and hemodynamic perturbations with accumulation of glucose-6-phosphate as a possible key event in the fluid flux between the vascular compartment and muscle tissue.
  •  
27.
  • Middleton, Michael, et al. (författare)
  • Quantifying Abdominal Adipose Tissue and Thigh Muscle Volume and Hepatic Proton Density Fat Fraction : Repeatability and Accuracy of an MR Imaging–based, Semiautomated Analysis Method
  • 2017
  • Ingår i: Radiology. - : Radiological Society of North America, Inc.. - 0033-8419 .- 1527-1315. ; 283:2, s. 438-449
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeThe purpose of this study was to determine the repeatability and accuracy of an   commercially available (Advanced MR Analytics [AMRA®]; Linköping, Sweden) magnetic resonance imaging (MRI)-based, semi-automated method to quantify abdominal adipose tissue and thigh muscle volume as well as hepatic proton density fat fraction (PDFF)Materials and MethodsThis prospective study was approved by an institutional review board (IRB) and was Health Insurance Portability and Accountability Act (HIPAA) compliant. All subjects provided written informed consent. Inclusion criteria were age ≥ 18 years, and willingness to participate. Exclusion criteria were contraindication to MRI. Three-dimensional, T1-weighted, dual-echo body-coil images were acquired from base of skull to knees at 3T, twice before and once after taking subjects off the scanner table (total of three acquisitions). Source images were reconstructed offline to generate water, and calibrated fat images where pure adipose tissue has unit value and absence of adipose tissue has zero value. Abdominal adipose tissues and thigh muscles were segmented, and their volumes estimated using AMRA  a semi-automated analysis method and, as a reference standard, manually. Hepatic PDFF was estimated using a confounder-corrected chemical-shift encoded MRI method with hybrid complex-magnitude reconstruction., and, as a reference standard, with magnetic resonance spectroscopy (MRS). Tissue volume and hepatic PDFF intra- and inter-examination repeatability was assessed by intraclass correlation (ICC) and coefficient of variation (CV) analysis. Tissue volume and hepatic PDFF accuracies were assessed by linear regression using their respective reference standards.ResultsTwenty adult subjects were enrolled (18 female, age range 25 - 76 yrs, body mass index range 19.3 to 43.9 kg/m2). Adipose and thigh muscle tissue volumes estimated using the semi-automated analysis method had intra-and inter-examination ICCs between 0.996 and 0.998, and CVs between 1.5 and 3.6%. For hepatic MRI PDFF, intra- and inter-examination ICCs were ≥ 0.994 and CVs, ≤ 7.3%. Agreement between semi-automated and manual volume estimates, and between MRI and MRS hepatic PDFF estimates, was high, with regression slopes and intercepts not significantly different from the identity line (all p’s > 0.05), and R2’s between 0.744 and 0.994.ConclusionsThis MRI-based, semi-automated method provides high repeatability, and high accuracy for estimating abdominal adipose tissue and thigh muscle volumes, and hepatic PDFF.
  •  
28.
  • Middleton, Michael, et al. (författare)
  • Repeatability and accuracy of a novel, MRI-based, semi-automated analysis method for quantifying abdominal adipose tissue and thigh muscle volumes
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Current MRI methods to estimate body tissue compartment volumes rely on manual segmentation, which is laborious, expensive, not widely available outside specialized centers, and not standardized. To address these concerns, a novel, semi-automated image analysis method has been developed. Image acquisition takes about six minutes, and uses widely available MRI pulse sequences. We found that this method permits comprehensive body compartment analysis and provides high repeatability and accuracy. Current and future clinical and drug development studies may benefit from this methodology, as may clinical settings where monitoring change in these measures is desired.
  •  
29.
  • Morales Drissi, Natasha, et al. (författare)
  • Unexpected Fat Distribution in Adolescents With Narcolepsy
  • 2018
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media SA. - 1664-2392. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Narcolepsy type 1 is a chronic sleep disorder with significantly higher BMI reported in more than 50% of adolescent patients, putting them at a higher risk for metabolic syndrome in adulthood. Although well-documented, the body fat distribution and mechanisms behind weight gain in narcolepsy are still not fully understood but may be related to the loss of orexin associated with the disease. Orexin has been linked to the regulation of brown adipose tissue (BAT), a metabolically active fat involved in energy homeostasis. Previous studies have used BMI and waist circumference to characterize adipose tissue increases in narcolepsy but none have investigated its specific distribution. Here, we examine adipose tissue distribution in 19 adolescent patients with narcolepsy type 1 and compare them to 17 of their healthy peers using full body magnetic resonance imaging (MRI). In line with previous findings we saw that the narcolepsy patients had more overall fat than the healthy controls, but contrary to our expectations there were no group differences in supraclavicular BAT, suggesting that orexin may have no effect at all on BAT, at least under thermoneutral conditions. Also, in line with previous reports, we observed that patients had more total abdominal adipose tissue (TAAT), however, we found that they had a lower ratio between visceral adipose tissue (VAT) and TAAT indicating a relative increase of subcutaneous abdominal adipose tissue (ASAT). This relationship between VAT and ASAT has been associated with a lower risk for metabolic disease. We conclude that while weight gain in adolescents with narcolepsy matches that of central obesity, the lower VAT ratio may suggest a lower risk of developing metabolic disease.
  •  
30.
  •  
31.
  • Newman, David, et al. (författare)
  • Test–retest reliability of rapid whole body and compartmental fat volume quantification on a widebore 3T MR system in normal-weight, overweight, and obese subjects
  • 2016
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley-Blackwell. - 1053-1807 .- 1522-2586. ; 44:6, s. 1464-1473
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo measure the test–retest reliability of rapid (<15 min) whole body and visceral fat volume quantification in normal and obese subjects on a widebore 3T MR system and compare it with conventional manual segmentation.Materials and MethodsThirty participants (body mass index [BMI] 20.1–48.6 kg/m2) underwent two whole-body magnetic resonance imaging (MRI) examinations on a widebore 3T machine using a 2-point Dixon technique. Phase sensitive reconstruction and intensity inhomogeneity correction produced quantitative datasets of total adipose tissue (TAT), abdominal subcutaneous adipose tissue (ASAT), and visceral adipose tissue (VAT). The quantification was performed automatically using nonrigid atlas-based segmentation and compared with manual segmentation (SliceOmatic).ResultsThe mean TAT was 31.74 L with a coefficient of variation (CV) of 0.79% and a coefficient of repeatability (CR) of 0.49 L. The ASAT was 7.92 L with a CV of 2.98% and a CR of 0.46 L. There was no significant difference in the semiautomated and manually segmented VAT (P = 0.73) but there were differences in the reliability of the two techniques. The mean semiautomated VAT was 2.56 L, CV 1.8%, and CR 0.09 L compared to the mean manually segmented VAT of 3.12 L, where the CV was 6.3% and the CR was 0.39 L.ConclusionRapid semiautomated whole body and compartmental fat volume quantification can be derived from a widebore 3T system, for a range of body sizes including obese patients, with “almost perfect” test–retest reliability.
  •  
32.
  •  
33.
  •  
34.
  • Norén, Bengt, et al. (författare)
  • Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA
  • 2013
  • Ingår i: European Radiology. - : Springer. - 0938-7994 .- 1432-1084. ; 23:1, s. 174-181
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesTo apply dynamic contrast-enhanced (DCE) MRI on patients presenting with elevated liver enzymes without clinical signs of hepatic decompensation in order to quantitatively compare the hepatocyte-specific uptake of Gd-EOB-DTPA with histopathological fibrosis stage.MethodsA total of 38 patients were prospectively examined using 1.5-T MRI. Data were acquired from regions of interest in the liver and spleen by using time series of single-breath-hold symmetrically sampled two-point Dixon 3D images (non-enhanced, arterial and venous portal phase; 3, 10, 20 and 30 min) following a bolus injection of Gd-EOB-DTPA (0.025 mmol/kg). The signal intensity (SI) values were reconstructed using a phase-sensitive technique and normalised using multiscale adaptive normalising averaging (MANA). Liver-to-spleen contrast ratios (LSC_N) and the contrast uptake rate (KHep) were calculated. Liver biopsy was performed and classified according to the Batts and Ludwig system.ResultsArea under the receiver-operating characteristic curve (AUROC) values of 0.71, 0.80 and 0.78, respectively, were found for KHep, LSC_N10 and LSC_N20 with regard to severe versus mild fibrosis. Significant group differences were found for KHep (borderline), LSC_N10 and LSC_N20.ConclusionsLiver fibrosis stage strongly influences the hepatocyte-specific uptake of Gd-EOB-DTPA. Potentially the normalisation technique and KHep will reduce patient and system bias, yielding a robust approach to non-invasive liver function determination.
  •  
35.
  •  
36.
  • Patra, Hirak Kumar, et al. (författare)
  • MRI-Visual Order–Disorder Micellar Nanostructures for Smart Cancer Theranostics
  • 2014
  • Ingår i: Advanced Healthcare Materials. - : Wiley-VCH Verlagsgesellschaft. - 2192-2640 .- 2192-2659. ; 3:4, s. 526-535
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of MRI-visual order–disorder structures for cancer nanomedicine explores a pH-triggered mechanism for theragnosis of tumor hallmark functions. Superparamagnetic iron oxide nanoparticles (SPIONs) stabilized with amphiphilic poly(styrene)-b-poly(acrylic acid)-doxorubicin with folic acid (FA) surfacing are employed as a multi-functional approach to specifically target, diagnose, and deliver drugs via a single nanoscopic platform for cancer therapy. The functional aspects of the micellar nanocomposite is investigated in vitro using human breast SkBr3 and colon cancer HCT116 cell lines for the delivery, release, localization, and anticancer activity of the drug. For the first time, concentration-dependent T2-weighted MRI contrast for a monolayer of clustered cancer cells is shown. The pH tunable order–disorder transition of the core–shell structure induces the relative changes in MRI contrast. The outcomes elucidate the potential of this material for smart cancer theranostics by delivering non-invasive real-time diagnosis, targeted therapy, and monitoring the course and response of the action before, during, and after the treatment regimen.
  •  
37.
  • Patra, Hirak Kumar, 1981-, et al. (författare)
  • Rational Nanotoolbox with Theranostic Potential for Medicated Pro-Regenerative Corneal Implants
  • 2019
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 29:38
  • Tidskriftsartikel (refereegranskat)abstract
    • Cornea diseases are a leading cause of blindness and the disease burden is exacerbated by the increasing shortage around the world for cadaveric donor corneas. Despite the advances in the field of regenerative medicine, successful transplantation of laboratory‐made artificial corneas is not fully realized in clinical practice. The causes of failure of such artificial corneal implants are multifactorial and include latent infections from viruses and other microbes, enzyme overexpression, implant degradation, extrusion or delayed epithelial regeneration. Therefore, there is an urgent unmet need for developing customized corneal implants to suit the host environment and counter the effects of inflammation or infection, which are able to track early signs of implant failure in situ. This work reports a nanotoolbox comprising tools for protection from infection, promotion of regeneration, and noninvasive monitoring of the in situ corneal environment. These nanosystems can be incorporated within pro‐regenerative biosynthetic implants, transforming them into theranostic devices, which are able to respond to biological changes following implantation.
  •  
38.
  • Peolsson, Anneli, et al. (författare)
  • Pathophysiology behind prolonged whiplash associated disorders : study protocol for an experimental study
  • 2019
  • Ingår i: BMC Musculoskeletal Disorders. - : BMC. - 1471-2474. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThere is insufficient knowledge of pathophysiological parameters to understand the mechanism behind prolonged whiplash associated disorders (WAD), and it is not known whether or not changes can be restored by rehabilitation. The aims of the projects are to investigate imaging and molecular biomarkers, cervical kinaesthesia, postural sway and the association with pain, disability and other outcomes in individuals with longstanding WAD, before and after a neck-specific exercise intervention. Another aim is to compare individuals with WAD with healthy controls.MethodsParticipants are a sub-group (n=30) of individuals recruited from an ongoing randomized controlled study (RCT). Measurements in this experimental prospective study will be carried out at baseline (before intervention) and at a three month follow-up (end of physiotherapy intervention), and will include muscle structure and inflammation using magnetic resonance imaging (MRI), brain structure and function related to pain using functional MRI (fMRI), muscle function using ultrasonography, biomarkers using samples of blood and saliva, cervical kinaesthesia using the butterfly test and static balance test using an iPhone app. Association with other measures (self-reported and clinical measures) obtained in the RCT (e.g. background data, pain, disability, satisfaction with care, work ability, quality of life) may be investigated. Healthy volunteers matched for age and gender will be recruited as controls (n=30).DiscussionThe study results may contribute to the development of improved diagnostics and improved rehabilitation methods for WAD.Trial registrationClinicaltrial.gov Protocol ID: NCT03664934, initial release 09/11/2018.
  •  
39.
  • Peterson, Pernilla, et al. (författare)
  • Fat Quantification in Skeletal Muscle Using Multigradient-Echo Imaging: Comparison of Fat and Water References
  • 2016
  • Ingår i: Journal of Magnetic Resonance Imaging. - : WILEY-BLACKWELL. - 1053-1807 .- 1522-2586. ; 43:1, s. 203-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To investigate the precision, accuracy, and repeatability of water/fat imaging-based fat quantification in muscle tissue using a large flip angle (FA) and a fat reference for the calculation of the proton density fat fraction (FF). Comparison is made to a small FA water reference approach. Materials and Methods: An Intralipid phantom and both forearms of six patients suffering from lymphedema and 10 healthy volunteers were investigated at 1.5T. Two multigradient-echo sequences with eight echo times and FAs of 10 degrees and 85 degrees were acquired. For healthy volunteers, the acquisition of the right arm was performed twice with repositioning. From each set, water reference FF and fat reference FF images were reconstructed and the average FF and the standard deviation were calculated within the subfascial compartment. The small FA water reference was considered the reference standard. Results: A high agreement was found between the small FA water reference and large FA fat reference methods (FF bias=0.31%). In this study, the large FA fat reference approach also resulted in higher precision (38% smaller FF standard deviation in homogenous muscle tissue), but no significant difference in repeatability between the various methods was detected (coefficient of repeatability of small FA water reference approach 0.41%). Conclusion: The precision of fat quantification in muscle tissue can be increased with maintained accuracy using a larger flip angle, if a fat reference instead of a water reference is used.
  •  
40.
  • Petridou, Elia, et al. (författare)
  • Breast fat volume measurement in a wide-bore 3T MR: comparison of traditional mammographic density evaluation with MR density measurements using automatic segmentation.
  • 2017
  • Ingår i: Clinical Radiology. - : Saunders Elsevier. - 0009-9260 .- 1365-229X. ; 72:7, s. 565-572
  • Tidskriftsartikel (refereegranskat)abstract
    • AimTo compare magnetic resonance imaging (MRI) derived breast density measurements using automatic segmentation algorithms with radiologist estimations using the Breast Imaging Reporting and Data Systems (BI-RADS) density classification.Materials and Methods40 women undergoing mammography and dynamic breast MRI as part of their clinical management were recruited. Fat-water separated MR images derived from a 2-point Dixon technique, phase sensitive reconstruction and atlas based segmentation were obtained before and after intravenous contrast. Breast density was assessed using software from Advanced MR Analytics (AMRA), Linköping, Sweden with results compared to the widely used four-quartile quantitative BIRADS scale.ResultsThe proportion of glandular tissue of the breast on MRI was derived from the AMRA sequence. The mean unenhanced breast density was 0.31 ± 0.22 (mean ± SD) (left) and 0.29 ± 0.21 (right). Mean breast density on post-contrast images was 0.32 ± 0.19 (left) and 0.32 ± 0.2 (right). There was "almost perfect" correlation between pre and post-contrast breast density quantification: Spearman correlation rho=0.98 (95% confidence intervals (CI): 0.97-0.99) (left) and rho=0.99(CI: 0.98-0.99) (right). The 95% limits of agreement were -0.11-0.08 (left) and -0.08-0.03 (right).Interobserver reliability for BIRADS is "substantial": weighted Kappa k=0.8 (CI: 0.74- 0.87). The Spearman Correlation coefficient between BIRADs and MR breast density was rho=0.73 (CI: 0.60-0.82) (left) and rho=0.75 (CI: 0.63-0.83) (right) which is also "substantial".ConclusionThe AMRA sequence provides a fully automated, reproducible, objective assessment of fibroglandular breast tissue proportion that correlates well with mammographic assessment of breast density with the added advantage of avoidance of ionising radiation. 
  •  
41.
  • Romu, Thobias, et al. (författare)
  • A randomized trial of cold-exposure on energy expenditure and supraclavicular brown adipose tissue volume in humans
  • 2016
  • Ingår i: Metabolism-Clinical and Experimental. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 65:6, s. 926-934
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To study if repeated cold-exposure increases metabolic rate and/or brown adipose tissue (BAT) volume in humans when compared with avoiding to freeze. Design. Randomized, open, parallel-group trial. Methods. Healthy non-selected participants were randomized to achieve cold-exposure 1 hour/day, or to avoid any sense of feeling cold, for 6 weeks. Metabolic rate (MR) was measured by indirect calorimetry before and after acute cold-exposure with cold vests and ingestion of cold water. The BAT volumes in the supraclavicular region were measured with magnetic resonance imaging (MRI). Results. Twenty-eight participants were recruited, 12 were allocated to controls and 16 to cold-exposure. Two participants in the cold group dropped out and one was excluded. Both the non-stimulated and the cold-stimulated MR were lowered within the group randomized to avoid cold (MR at room temperature from 1841 +/- 199 kCal/24 h to 1795 +/- 213 kCal/24 h, p = 0.047 cold-activated MR from 1900 +/- 150 kCal/24 h to 1793 +/- 215 kCal/24 h, p = 0.028). There was a trend towards increased MR at room temperature following the intervention in the cold-group (p = 0.052). The difference between MR changes by the interventions between groups was statistically significant (p = 0.008 at room temperature, p = 0.032 after cold-activation). In an on-treatment analysis after exclusion of two participants that reported >= 8 days without cold-exposure, supraclavicular BAT volume had increased in the cold-exposure group (from 0.0175 +/- 0.015 1 to 0.0216 +/- 0.014 1, p = 0.049). Conclusions. We found evidence for plasticity in metabolic rate by avoiding to freeze compared with cold-exposure in a randomized setting in non-selected humans.
  •  
42.
  • Romu, Thobias, et al. (författare)
  • Characterization of Brown Adipose Tissue by Water-Fat Separated Magnetic Resonance Imaging
  • 2015
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 42:6, s. 1639-1645
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: To evaluate the possibility of quantifying brown adipose tissue (BAT) volume and fat concentration with a high resolution, long echo time, dual-echo Dixon imaging protocol. Methods: A 0.42 mm isotropic resolution water-fat separated MRI protocol was implemented by using the second opposite-phase echo and third in-phase echo. Fat images were calibrated with regard to the intensity of nearby white adipose tissue (WAT) to form relative fat content (RFC) images. To evaluate the ability to measure BAT volume and RFC contrast dynamics, rats were divided into two groups that were kept at 48 or 22 degrees C for 5 days. The rats were then scanned in a 70 cm bore 3.0 Tesla MRI scanner and a human dual energy CT. Interscapular, paraaortal, and perirenal BAT (i/pa/pr-BAT) depots as well as WAT and muscle were segmented in the MRI and CT images. Biopsies were collected from the identified BAT depots. Results: The biopsies confirmed that the three depots identified with the RFC images consisted of BAT. There was a significant linear correlation (P< 0.001) between the measured RFC and the Hounsfield units from DECT. Significantly lower iBAT RFC (P=0.0064) and significantly larger iBAT and prBAT volumes (P=0.0017) were observed in the cold stimulated rats. Conclusion: The calibrated Dixon images with RFC scaling can depict BAT and be used to measure differences in volume, and fat concentration, induced by cold stimulation. The high correlation between RFC and HU suggests that the fat concentration is the main RFC image contrast mechanism.
  •  
43.
  • Romu, Thobias, 1984- (författare)
  • Fat-Referenced MRI : Quantitative MRI for Tissue Characterization and Volume Measurement
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The amount and distribution of adipose and lean tissues has been shown to be predictive of mortality and morbidity in metabolic disease. Traditionally these risks are assessed by anthropometric measurements based on weight, length, girths or the body mass index (BMI). These measurements are predictive of risks on a population level, where a too low or a too high BMI indicates an increased risk of both mortality and morbidity. However, today a large part of the world’s population belongs to a group with an elevated risk according to BMI, many of which will live long and healthy lives. Thus, better instruments are needed to properly direct health-care resources to those who need it the most.Medical imaging method can go beyond anthropometrics. Tomographic modalities, such as magnetic resonance imaging (MRI), can measure how we have stored fat in and around organs. These measurements can eventually lead to better individual risk predictions. For instance, a tendency to store fat as visceral adipose tissue (VAT) is associated with an increased risk of diabetes type 2, cardio-vascular disease, liver disease and certain types of cancer. Furthermore, liver fat is associated with liver disease, diabetes type 2. Brown adipose tissue (BAT), is another emerging component of body-composition analysis. While the normal white adipose tissue stores fat, BAT burns energy to produce heat. This unique property makes BAT highly interesting, from a metabolic point of view.Magnetic resonance imaging can both accurately and safely measure internal adipose tissue compartments, and the fat infiltration of organs. Which is why MRI is often considered the reference method for non-invasive body-composition analysis. The two major challenges of MRI based body-composition analysis are, the between-scanner reproducibility and a cost-effective analysis of the images. This thesis presents a complete implementation of fat-referenced MRI, a technique that produces quantitative images that can increase both inter-scanner and automation of the image analysis.With MRI, it is possible to construct images where water and fat are separated into paired images. In these images, it easy to depict adipose tissue and lean tissue structures. This thesis takes water-fat MRI one step further, by introducing a quantitative framework called fat-referenced MRI. By calibrating the image using the subjects' own adipose tissue (paper II), the otherwise non-quantitative fat images are made quantitative. In these fat-referenced images it is possible to directly measure the amount of adipose tissue in different compartments. This quantitative property makes image analysis easy and accurate, as lean and adipose tissues can be separated on a sub-voxel level. Fat-referenced MRI further allows the quantification and characterization of BAT.This thesis work starts by formulating a method to produce water-fat images (paper I) based on two gradient recall images, i.e.\ 2-point Dixon images (2PD). It furthers shows that fat-referenced 2PD images can be corrected for T2*, making the 2PD body-composition measurements comparable with confounder-corrected Dixon measurements (paper III}).Both the water-fat separation method and fat image calibration are applied to BAT imaging. The methodology is first evaluated in an animal model, where it is shown that it can detect both BAT browning and volume increase following cold acclimatization (paper IV). It is then applied to postmortem imaging, were it is used to locate interscapular BAT in human infants (paper V). Subsequent analysis of biopsies, taken based on the MRI images, showed that the interscapular BAT was of a type not previously believed to exist in humans. In the last study, fat-referenced MRI is applied to BAT imaging of adults. As BAT structures are difficult to locate in many adults, the methodology was also extended with a multi-atlas segmentation methods (paper VI).In summary, this thesis shows that fat-referenced MRI is a quantitative method that can be used for body-composition analysis. It also shows that fat-referenced MRI can produce quantitative high-resolution images, a necessity for many BAT applications.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Romu, Thobias, et al. (författare)
  • MANA - Multi scale adaptive normalized averaging
  • 2011
  • Ingår i: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. - : IEEE conference proceedings. - 9781424441280 ; , s. 361-364
  • Konferensbidrag (refereegranskat)abstract
    • It is possible to correct intensity inhomogeneity in fat–water Magnetic Resonance Imaging (MRI) by estimating a bias field based on the observed intensities of voxels classified as the pure adipose tissue. The same procedure can also be used to quantify fat volume and its distribution which opens up for new medical applications. The bias field estimation method has to be robust since pure fat voxels are irregularly located and the density varies greatly within and between image volumes. This paper introduces Multi scale Adaptive Normalized Average (MANA) that solves this problem bybasing the estimate on a scale space of weighted averages. By usingthe local certainty of the data MANA preserves details where the local data certainty is high and provides realistic values in sparse areas.
  •  
48.
  •  
49.
  • Romu, Thobias, et al. (författare)
  • Robust Water Fat Separated Dual-Echo MRI by Phase-Sensitive Reconstruction
  • 2017
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley-Blackwell. - 0740-3194 .- 1522-2594. ; 78:3, s. 1208-1216
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data.Methods: A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; 1, identification of clusters of tissue voxels; 2, unwrapping of the phase in each cluster by solving Poisson’s equation; 3, find the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. The robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software.Results: In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software.Conclusion: The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts.
  •  
50.
  • Romu, Thobias, et al. (författare)
  • The effect of flip-angle on body composition using calibrated water-fat MRI.
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This study tested how the flip angle affects body composition analysis by MRI, if adipose tissue is used as an internal intensity reference. Whole-body water-fat images with flip angle 5° and 10° were collected from 29 women in an ongoing study. The images were calibrated based on the adipose tissue signal and whole-body total adipose, lean and soft tissue volumes were measured. A mean difference of 0.29 L, or 0.90 % of the average volume, and a coefficient of variation of 0.40 % was observed for adipose tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 58
Typ av publikation
tidskriftsartikel (31)
konferensbidrag (25)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (19)
Författare/redaktör
Romu, Thobias (53)
Borga, Magnus (42)
Dahlqvist Leinhard, ... (29)
Dahlqvist Leinhard, ... (24)
Karlsson, Anette (10)
West, Janne (10)
visa fler...
Forsgren, Mikael (8)
Kechagias, Stergios (7)
Lundberg, Peter (7)
Smedby, Örjan (6)
Almer, Sven (6)
Bell, Jimmy (6)
Romu, Thobias, 1984- (5)
Lundberg, Peter, 195 ... (4)
Smedby, Örjan, 1956- (4)
West, Janne, 1982- (4)
Persson, Anders (4)
Thomas, E. Louise (4)
Enerbäck, Sven, 1958 (4)
Hammar, Mats (4)
Lindh-Åstrand, Lotta (4)
Norén, Bengt (4)
Linge, Jennifer (4)
Lindblom, Hanna (4)
Nyström, Fredrik (4)
Rosander, Johannes (4)
Borga, Magnus, 1965- (3)
Karlsson, Markus (3)
Elander, Louise (3)
Lidell, Martin, 1970 (3)
Widholm, Per (3)
Dahlström, Nils, 196 ... (3)
Peolsson, Anneli (2)
Peolsson, Anneli, 19 ... (2)
Engström, Maria (2)
Kihlberg, Johan (2)
Ahlgren, André (2)
Sirlin, Claude B. (2)
Loomba, Rohit (2)
Bell, Jimmy D. (2)
Zsigmond, Peter (2)
Andersson, Thord (2)
Patra, Hirak Kumar (2)
Berin, Emilia (2)
Spetz Holm, Anna-Cla ... (2)
Spetz, Anna-Clara (2)
Betz, Mattias J. (2)
Heglind, Mikael, 197 ... (2)
Hamilton, Gavin (2)
Wolfson, Tanya (2)
visa färre...
Lärosäte
Linköpings universitet (58)
Göteborgs universitet (5)
Uppsala universitet (3)
Karolinska Institutet (3)
Kungliga Tekniska Högskolan (2)
Lunds universitet (2)
visa fler...
Örebro universitet (1)
visa färre...
Språk
Engelska (57)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (52)
Teknik (38)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy