SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roncero O.) "

Sökning: WFRF:(Roncero O.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bulut, N., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): III. Unlocking the CS chemistry: The CS+O reaction
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Carbon monosulphide (CS) is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. However, chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. Aims. The CS+O → CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150-400 K, but the extrapolation to lower temperatures is doubtful. Our goal is to calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. Methods. We performed ab initio calculations to obtain the three lowest potential energy surfaces (PES) of the CS+O system. These PESs are used to study the reaction dynamics, using several methods (classical, quantum, and semiclassical) to eventually calculate the CS + O thermal reaction rates. In order to check the accuracy of our calculations, we compare the results of our theoretical calculations for T ~ 150-400 K with those obtained in the laboratory. Results. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150-400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, below 10-15 cm s-1, which is consistent with the extrapolation of experimental data using the Arrhenius expression. Conclusions. We use the updated chemical network to model the sulfur chemistry in Taurus Molecular Cloud 1 (TMC 1) based on molecular abundances determined from Gas phase Elemental abundances in Molecular CloudS (GEMS) project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate, ζH2, along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.
  •  
3.
  • Fuente, A., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS) I. The prototypical dark cloud TMC 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • GEMS is an IRAM 30 m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud Taurus molecular cloud (TMC) 1. Extensive millimeter observations have been carried out with the IRAM 30 m telescope (3 and 2mm) and the 40 m Yebes telescope (1.3 cm and 7 mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from A(v) similar to 3 to similar to 20 mag. Two phases with differentiated chemistry can be distinguished: (i) the translucent envelope with molecular hydrogen densities of 1-5 x 10(3) cm(-3); and (ii) the dense phase, located at A(v) > 10 mag, with molecular hydrogen densities >10(4) cm(-3). Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone (A(v) similar to 3 mag) where C/H similar to 8 x 10(-5) and C/O similar to 0.8-1, until the beginning of the dense phase at A(v) similar to 10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate an S/H similar to (0.4-2.2) x 10(-6), an abundance similar to 7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H similar to 8 x 10(-8)). Based on our chemical modeling, we constrain the value of zeta(H2) to similar to(0.5-1.8) x 10(-16) s(-1) in the translucent cloud.
  •  
4.
  • Goicoechea, Javier R., et al. (författare)
  • The ALMA view of UV-irradiated cloud edges: unexpected structures and processes
  • 2018
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; S332, s. 210-217
  • Konferensbidrag (refereegranskat)abstract
    • Far-UV photons (FUV, E < 13.6 eV) from hot massive stars regulate, or at least influence, the heating, ionization, and chemistry of most of the neutral interstellar medium (H i and H2 clouds). Investigating the interaction between FUV radiation and interstellar matter (molecules, atoms and grains) thus plays an important role in astrochemistry. The Orion Bar, an interface region between the Orion A molecular cloud and the H ii  region around the Trapezium cluster, is a textbook example of a strongly illuminated dense PDR (photodissociation region). The Bar is illuminated by a FUV field of a few 104 times the mean interstellar radiation field. Because of its proximity and nearly edge-on orientation, it provides a very good template to investigate the chemical content, structure, and dynamics of a strongly irradiated molecular cloud edge. We have used ALMA to mosaic a small field of the Bar where the critical transition from atomic to molecular gas takes place. These observations provide an unprecedented sharp view of this transition layer (≲ 1″ resolution or ≲ 414 AU). The resulting images (so far in the rotational emission of CO, HCO+, H13CO+, SO+, SO, and reactive ions SH+ and HOC+) show the small-scale structure in gas density and temperature, and the steep abundance gradients. The images reveal a pattern of high-density substructures, photo-ablative gas flows and instabilities at the edge of the molecular cloud. These first ALMA images thus show a more complex morphology than the classical clump/interclump static model of a PDR. In order to quantify the chemical content in strongly FUV-irradiated gas, we have also used the IRAM-30 m telescope to carry out a complete line-survey of the illuminated edge of the Bar in the millimeter domain. Our observations reveal the presence of complex organic molecules (and precursors) that were not expected in such a harsh environment. In particular, we have reported the first detection of the unstable cis conformer of formic acid (HCOOH) in the ISM. The energy barrier to internal rotation (the conversion from trans to cis) is approximately 4827 cm−1 (≈7000 K). Hence, this detection is surprising. The low inferred trans-to-cis abundance ratio of 2.8±1.0 supports a photoswitching mechanism: a given conformer absorbs a FUV stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we have specifically studied with ab initio quantum calculations, was not considered so far in astrochemistry although it can affect the structure of a variety of molecules in PDRs.
  •  
5.
  •  
6.
  • Navarro-Almaida, D., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): II. On the quest for the sulphur reservoir in molecular clouds: the H2S case
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n(H) > 2 x 10(4). This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5-10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.
  •  
7.
  • Rodríguez-Baras, M., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): IV. Observational results and statistical trends
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30 m Large Program designed to provide estimates of the S, C, N, and O depletions and gas ionization degree, X(e-), in a selected set of star-forming filaments of Taurus, Perseus, and Orion. Our immediate goal is to build up a complete and large database of molecular abundances that can serve as an observational basis for estimating X(e-) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species (13CO, C18O, HCO+, H13CO+, HC18O+, HCN, H13CN, HNC, HCS+, CS, SO, 34SO, H2S, and OCS) in 244 positions, covering the AV ~3 to ~100 mag, n(H2) ~ a few 103 to 106 cm-3, and Tk ~10 to ~30 K ranges in these clouds, and avoiding protostars, HII regions, and bipolar outflows. A statistical analysis is carried out in order to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families of species: (1) 13CO and C18O isotopologs; (2) H13CO+, HC18O+, H13 CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until TK ~ 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of ~3. The abundances of H13 CO+, HC18 O+, H13 CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law ∝ n(H2)-0.8  ±  0.2. The abundances of S-bearing species also decrease with molecular hydrogen density at a rate of (S-bearing/H)gas ∝ n(H2)-0.6  ±  0.1. The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the C18O abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the 13CO/C18O, HCO+/H13CO+, and H13 CO+/H13CN abundance ratios as chemical diagnostics of star formation in external galaxies.
  •  
8.
  • Sanchez-Roncero, A., et al. (författare)
  • ASDG - An AI-based framework for automatic classification of impact on the SDGs
  • 2022
  • Ingår i: ACM International Conference Proceeding Series. - New York, NY, USA : Association for Computing Machinery (ACM). ; , s. 119-123
  • Konferensbidrag (refereegranskat)abstract
    • Achieving the Sustainable Development Goals of the United Nations is the primary goal of the 2030 Agenda. A critical step towards that objective is identifying if the scientific production is going in this way. Funders must do a manual recognition, impacting accuracy, scalability, and objectiveness. For this reason, we propose in this work an AI-based model for the automatic classification of scientific papers based on their impacts on the SDGs. The training database consists of manually extracted texts from the UN page. After preprocessing these texts, we train three models: NMF, LDA, and Top2Vec. The output of these models is the probability of a paper being associated with each SDG. We then combine their scores by implementing a voting function to take advantage of their inherently different mathematical nature. To validate this methodology, we use the database provided by Vinuesa et al., Nature Communications 11, with more than 150 papers labeled with at least 1 SDG. Using only the abstracts, we correctly identify a of the SDGs presented in a paper, while a better is obtained when fetching the complete paper information. Moreover, we find that the other identified SDGs which were not labeled are also related to the text contents. We recognize that more training files are required for the other cases since they are based on more complex human reasoning. We open-source these databases and trained models to enable future investigation in this field and allow public institutions to use this tool. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy