SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rondina Matthew T) "

Sökning: WFRF:(Rondina Matthew T)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banerjee, Meenakshi, et al. (författare)
  • Prospective, International, Multisite Comparison of Platelet Isolation Techniques for Genome-Wide Transcriptomics : Communication from the SSC of the ISTH
  • 2024
  • Ingår i: Journal of Thrombosis and Haemostasis. - : John Wiley & Sons. - 1538-7933 .- 1538-7836.
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide platelet transcriptomics is increasingly used to uncover new aspects of platelet biology and as a diagnostic and prognostic tool. Nevertheless, platelet isolation methods for transcriptomic studies are not standardized, introducing challenges for cross-study comparisons, data integration, and replication. In this prospective multicenter study, called "Standardizing Platelet Transcriptomics for Discovery, Diagnostics, and Therapeutics in the Thrombosis and Hemostasis Community (STRIDE)" by the ISTH SSCs, we assessed how three of the most commonly used platelet isolation protocols influence metrics from next-generation bulk RNA sequencing and functional assays. Compared with washing alone, more stringent removal of leukocytes by anti-CD45 beads or PALLTM filters resulted in a sufficient quantity of RNA for next-generation sequencing and similar quality of RNA sequencing metrics. Importantly, stringent removal of leukocytes resulted in the lower relative expression of known leukocyte-specific genes and the higher relative expression of known platelet-specific genes. The results were consistent across enrolling sites, suggesting the techniques are transferrable and reproducible. Moreover, all three isolation techniques did not influence basal platelet reactivity, but agonist-induced integrin αIIbβ3 activation is reduced by anti-CD45 bead isolation compared to washing alone. In conclusion, the isolation technique chosen influences genome-wide transcriptional and functional assays in platelets. These results should help the research community make informed choices about platelet isolation techniques in their own platelet studies.
  •  
2.
  •  
3.
  • Kapur, Rick, et al. (författare)
  • T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10
  • 2017
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 129:18, s. 2557-2569
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related fatalities and is characterized by acute respiratory distress following blood transfusion. Donor antibodies are frequently involved; however, the pathogenesis and protective mechanisms in the recipient are poorly understood, and specific therapies are lacking. Using newly developed murine TRALI models based on injection of anti-major histocompatibility complex class I antibodies, we found CD4+CD25+FoxP3+ T regulatory cells (Tregs) and CD11c+ dendritic cells (DCs) to be critical effectors that protect against TRALI. Treg or DC depletion in vivo resulted in aggravated antibody-mediated acute lung injury within 90 minutes with 60% mortality upon DC depletion. In addition, resistance to antibody-mediated TRALI was associated with increased interleukin-10 (IL-10) levels, and IL-10 levels were found to be decreased in mice suffering from TRALI. Importantly, IL-10 injection completely prevented and rescued the development of TRALI in mice and may prove to be a promising new therapeutic approach for alleviating lung injury in this serious complication of transfusion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy