SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roos Fredrik 1976 ) "

Sökning: WFRF:(Roos Fredrik 1976 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Henriksson, Manne, 1987-, et al. (författare)
  • Implementation of an Optimal Look-Ahead Controller in a Heavy-Duty Distribution Vehicle
  • 2019
  • Ingår i: Proceedings 2019 IEEE Intelligent Vehicles Symposium (IV). ; , s. 2202-2207
  • Konferensbidrag (refereegranskat)abstract
    • Controlling the longitudinal movement of heavy-duty vehicles based on optimal control can be a cost-efficient way of reducing their fuel consumption. Such controllers today mainly exist for vehicles in haulage applications, in which the velocity is allowed to deviate from a constant set-speed. For distribution vehicles, which is the focus of this paper, the desired and required velocity has large variations, which makes the situation more complex. This paper describes the implementation of an optimal controller in a real heavy-duty distribution vehicle. The optimal control problem is solved offline as a Mixed Integer Quadratic Program, which yields reference trajectories that are tracked online in the vehicle. Some important steps in the procedure of the implementation are, except for designing the controller: developing a positioning system for the test track where the experiments are performed, estimating the parameters of the resistive forces, and setting the velocity constraints. Simulations show a potential of 10% reduction in fuel consumption without increasing the trip time. Experiments are then performed in a Scania truck, with the optimal solution as reference for the existing cruise control functions in the vehicle. It is concluded that in order to verify the fuel savings experimentally, the low-level controllers in the vehicle must be modified such that the tracking error is decreased.
  •  
2.
  • Henriksson, Manne, 1987-, et al. (författare)
  • Optimal Freewheeling Control of a Heavy-Duty Vehicle Using Mixed Integer Quadratic Programming
  • 2020
  • Ingår i: IFAC PAPERSONLINE. - : Elsevier BV. - 2405-8963. ; , s. 13809-13815
  • Konferensbidrag (refereegranskat)abstract
    • Improving the powertrain control of heavy-duty vehicles can be an efficient way to reduce the fuel consumption and thereby reduce both the operating cost and the environmental impact. One way of doing so is by using information about the upcoming driving conditions, known as look-ahead information, in order to coast in gear or to use freewheeling. Controllers using such techniques today mainly exist for vehicles in highway driving. This paper therefore targets how such control can be applied to vehicles with more variations in their velocity. The driving mission of such a vehicle is here formulated as an optimal control problem. The control variables are the tractive force, the braking force, and a Boolean variable representing closed or open powertrain. The problem is solved by a model predictive controller, which at each iteration solves a mixed integer quadratic program. The fuel consumption is compared for four different control policies: a benchmark following the reference of the driving cycle, look-ahead control without freewheeling, freewheeling with the engine idling, and freewheeling with the engine turned off. Simulations on a driving cycle with a varying velocity profile show the potential of saving 11 %, 19 %, and 23% respectively for the control policies compared with the benchmark, in all cases without increasing the trip time. Copyright
  •  
3.
  • Roos, Fredrik, 1976- (författare)
  • On design methods for mechatronics : servo motor and gearhead
  • 2005
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The number of electric powered sub-systems in road-vehicles is increasing fast. This development is primarily driven by the new and improved functionality that can be implemented with electro-mechanical sub-systems, but it is also necessary for the transition to electric and hybrid-electric drive trains. An electromechanical sub-system can be implemented as a physically integrated mechatronic module: controller, power electronics, electric motor, transmission and sensors, all integrated into one component. A mechatronic module, spans, as all mechatronic systems, over several closely coupled engineering disciplines: mechanics, electronics, electro-mechanics, control theory and computer science. In order to design and optimize a mechatronic system it is therefore desirable to design the system within all domains concurrently. Optimizing each domain or component separately will not result in the optimal system design. Furthermore, the very large production volumes of automotive sub-systems increase the freedom in the mechatronics design process. Instead of being limited to the selection from off-the shelf components, application specific components may be designed. The research presented in this thesis aims at development of an integrated design and optimization methodology for mechatronic modules. The target of the methodology is the conceptual design phase, where the number of design parameters is relatively small. So far, the focus has been on design methods for the electric motor and gearhead, two of the most important components in an actuation module. The thesis presents two methods for design and optimization of motor and gearhead in mechatronic applications. One discrete method, intended for the selection of off-the-shelf components, and one method mainly intended for high volume applications where new application specific components may be designed. Both methods can handle any type of load combination, which is important in mechatronic systems, where the load seldom can be classified as pure inertial or constant speed. Furthermore, design models relating spur gear weight, size and inertia to output torque and gear ratio are presented. It is shown that a gearhead has significantly lower inertia and weight than a motor. The results indicate that it almost always is favorable from a weight and size perspective to use a gearhead. A direct drive configuration may only be lighter for very high speed applications. The main contribution of this thesis is however the motor/gear ratio sizing methods that can be applied to any electromechanical actuation system that requires rotational motion.
  •  
4.
  • Roos, Fredrik, 1976- (författare)
  • Towards a methodology for integrated design of mechatronic servo systems
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Traditional methods for mechatronics design are often based on a sequential approach, where the mechanical structure is designed first, and then fitted with off-the-shelf electric motors, drive electronics, gearheads and sensors. Finally a control system is designed and optimized for the already existing physical system. Such a design method, that doesn’t consider aspects from a control point of view during the design of the physical system, is unlikely to result in a system with optimal control performance. Furthermore, to separately design and optimize each of the physical components will, from a global perspective, generally not result in a system that is optimal from a weight, size or cost perspective. In order to reach the optimal design of an integrated mechatronic system (mechatronic module) it is necessary to treat the system as a whole, considering aspects from all involved engineering domains concurrently. In this thesis such an approach to integrated design of mechatronic servo systems is presented. A design methodology that considers the simultaneous design of the electric machine, gearhead, machine driver and control system, and therefore enables global optimization, has been developed. The target of the design methodology is conceptual design and evaluation. It is assumed that the load to be driven by the servo system is known and well defined, a load profile describing the wanted load motion and the corresponding torque, is required as input. The methodology can then be used to derive the lightest or smallest possible system that can drive the specified load. Furthermore, the control performance is evaluated and optimized, such that the physical system design and the controller design are integrated. The methodology is based on modelling and simulation. Two types of component models have been developed, static and dynamic models. The static models describe relations between the parameters of the physical components, for example a component’s torque rating as function of its size. The static models are based on traditional design rules and are used to optimize the physical parts of the system. The dynamic models describe the behaviour of the components and are used for control system design and performance optimization. The gear ratio is identified to be the most central design variable when designing and optimizing electromechanical servo systems. The gear ratio directly affects the required size of the gearhead, electric machine and the machine driver. But it has also large influences on the system’s control performance. It is concluded that high gear ratios generally are better from a control point of view than low ratios. A consequence of this is that it is possible, without compromising the control performance, to use less expensive (less accurate) sensors and microprocessors in high gear ratio servo systems, while low gear ratio systems require more expensive hardware. It is also concluded that it is essential to include all performance limiting phenomena, linear as well as non-linear, in this type of integrated analysis. Using for example a linearized system description for controller design, means that many of the most important couplings between control system and physical system design are overlooked.
  •  
5.
  • Vågesjö, Evelina, et al. (författare)
  • Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 115:8, s. 1895-1900
  • Tidskriftsartikel (refereegranskat)abstract
    • Impaired wound closure is a growing medical problem associated with metabolic diseases and aging. Immune cells play important roles in wound healing by following instructions from the microenvironment. Here, we developed a technology to bioengineer the wound microenvironment and enhance healing abilities of the immune cells. This resulted in strongly accelerated wound healing and was achieved by transforming Lactobacilli with a plasmid encoding CXCL12. CXCL12-delivering bacteria administrated topically to wounds in mice efficiently enhanced wound closure by increasing proliferation of dermal cells and macrophages, and led to increased TGF-β expression in macrophages. Bacteria-produced lactic acid reduced the local pH, which inhibited the peptidase CD26 and consequently enhanced the availability of bioactive CXCL12. Importantly, treatment with CXCL12-delivering Lactobacilli also improved wound closure in mice with hyperglycemia or peripheral ischemia, conditions associated with chronic wounds, and in a human skin wound model. Further, initial safety studies demonstrated that the topically applied transformed bacteria exerted effects restricted to the wound, as neither bacteria nor the chemokine produced could be detected in systemic circulation. Development of drugs accelerating wound healing is limited by the proteolytic nature of wounds. Our technology overcomes this by on-site chemokine production and reduced degradation, which together ensure prolonged chemokine bioavailability that instructed local immune cells and enhanced wound healing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy