SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman N. J. G.) "

Sökning: WFRF:(Rorsman N. J. G.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, J., et al. (författare)
  • Fumarate Hydratase Deletion in Pancreatic beta Cells Leads to Progressive Diabetes
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 20:13, s. 3135-3148
  • Tidskriftsartikel (refereegranskat)abstract
    • We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic beta cells (Fh1 beta KO mice) appear normal for 6-8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1 alpha or Nrf2. Progressive hyperglycemia in Fh1bKO mice led to dysregulated metabolism in b cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+](i) elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1bKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.
  •  
2.
  • Kellard, J. A., et al. (författare)
  • Reduced somatostatin signalling leads to hypersecretion of glucagon in mice fed a high-fat diet
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 40
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Elevated plasma glucagon is an early symptom of diabetes, occurring in subjects with impaired glucose regulation. Here, we explored alpha-cell function in female mice fed a high-fat diet (HFD). Methods: Female mice expressing the Ca2+ indicator GCaMP3 specifically in alpha-cells were fed a high-fat or control (CTL) diet. We then conducted in vivo phenotyping of these mice, as well as experiments on isolated (ex vivo) islets and in the in situ perfused pancreas. Results: In HFD-fed mice, fed plasma glucagon levels were increased and glucagon secretion from isolated islets and in the perfused mouse pancreas was also elevated. In mice fed a CTL diet, increasing glucose reduced intracellular Ca2+ ([Ca2+](i)) oscillation frequency and amplitude. This effect was also observed in HFD mice; however, both the frequency and amplitude of the [Ca2+](i) oscillations were higher than those in CTL alpha-cells. Given that alpha-cells are under strong paracrine control from neighbouring somatostatin-secreting delta-cells, we hypothesised that this elevation of alpha-cell output was due to a lack of somatostatin (SST) secretion. Indeed, SST secretion in isolated islets from HFD-fed mice was reduced but exogenous SST also failed to suppress glucagon secretion and [Ca2+](i) activity from HFD alpha-cells, in contrast to observations in CTL mice. Conclusions: These findings suggest that reduced delta-cell function, combined with intrinsic changes in alpha-cells including sensitivity to somatostatin, accounts for the hyperglucagonaemia in mice fed a HFD. (C) 2020 The Author(s). Published by Elsevier GmbH.
  •  
3.
  • Briant, L. J. B., et al. (författare)
  • CPT1a-Dependent Long-Chain Fatty Acid Oxidation Contributes to Maintaining Glucagon Secretion from Pancreatic Islets
  • 2018
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 23:11, s. 3300-3311
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon, the principal hyperglycemic hormone, is secreted from pancreatic islet a cells as part of the counter-regulatory response to hypoglycemia. Hence, secretory output from a cells is under high demand in conditions of low glucose supply. Many tissues oxidize fat as an alternate energy substrate. Here, we show that glucagon secretion in low glucose conditions is maintained by fatty acid metabolism in both mouse and human islets, and that inhibiting this metabolic pathway profoundly decreases glucagon output by depolarizing alpha cell membrane potential and decreasing action potential amplitude. We demonstrate, by using experimental and computational approaches, that this is not mediated by the K-ATP channel, but instead due to reduced operation of the Na+-K+ pump. These data suggest that counter-regulatory secretion of glucagon is driven by fatty acid metabolism, and that the Na+-K+ pump is an important ATP-dependent regulator of alpha cell function.
  •  
4.
  • Zhang, Q., et al. (författare)
  • Na+ current properties in islet alpha- and beta-cells reflect cell-specific Scn3a and Scn9a expression
  • 2014
  • Ingår i: Journal of Physiology-London. - : Wiley. - 0022-3751 .- 1469-7793. ; 592:21, s. 4677-4696
  • Tidskriftsartikel (refereegranskat)abstract
    • - and -cells express both Na(v)1.3 and Na(v)1.7 Na+ channels but in different relative amounts. The differential expression explains the different properties of Na+ currents in - and -cells. Na(v)1.3 is the functionally important Na+ channel subunit in both - and -cells. Islet Na(v)1.7 channels are locked in an inactive state due to an islet cell-specific factor. Mouse pancreatic - and -cells are equipped with voltage-gated Na+ currents that inactivate over widely different membrane potentials (half-maximal inactivation (V-0.5) at -100mV and -50mV in - and -cells, respectively). Single-cell PCR analyses show that both - and -cells have Na(v)1.3 (Scn3) and Na(v)1.7 (Scn9a) subunits, but their relative proportions differ: -cells principally express Na(v)1.7 and -cells Na(v)1.3. In -cells, genetically ablating Scn3a reduces the Na+ current by 80%. In -cells, knockout of Scn9a lowers the Na+ current by >85%, unveiling a small Scn3a-dependent component. Glucagon and insulin secretion are inhibited in Scn3a(-/-) islets but unaffected in Scn9a-deficient islets. Thus, Na(v)1.3 is the functionally important Na+ channel subunit in both - and -cells because Na(v)1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Na(v)1.7 sequence in brain and islets is identical and yet the V-0.5 for inactivation is >30mV more negative in -cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation.
  •  
5.
  •  
6.
  • Vergari, Elisa, et al. (författare)
  • Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta-cells.
  • 2020
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:1, s. 32-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic islets are complex micro-organs consisting of at least three different cell types: glucagon-secreting α-, insulin-producing β- and somatostatin-releasing δ-cells1. Somatostatin is a powerful paracrine inhibitor of insulin and glucagon secretion2. In diabetes, increased somatostatinergic signalling leads to defective counter-regulatory glucagon secretion3. This increases the risk of severe hypoglycaemia, a dangerous complication of insulin therapy4. The regulation of somatostatin secretion involves both intrinsic and paracrine mechanisms5 but their relative contributions and whether they interact remains unclear. Here we show that dapagliflozin-sensitive glucose- and insulin-dependent sodium uptake stimulates somatostatin secretion by elevating the cytoplasmic Na+ concentration ([Na+]i) and promoting intracellular Ca2+-induced Ca2+ release (CICR). This mechanism also becomes activated when [Na+]i is elevated following the inhibition of the plasmalemmal Na+-K+ pump by reductions of the extracellular K+ concentration emulating those produced by exogenous insulin in vivo6. Islets from some donors with type-2 diabetes hypersecrete somatostatin, leading to suppression of glucagon secretion that can be alleviated by a somatostatin receptor antagonist. Our data highlight the role of Na+ as an intracellular second messenger, illustrate the significance of the intraislet paracrine network and provide a mechanistic framework for pharmacological correction of the hormone secretion defects associated with diabetes that selectively target the δ-cells.
  •  
7.
  • Hamilton, A., et al. (författare)
  • Adrenaline stimulates glucagon secretion by Tpc2-Dependent ca2+ mobilization from acidic stores in pancreatic a-Cells
  • 2018
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 67:6, s. 1128-1139
  • Tidskriftsartikel (refereegranskat)abstract
    • Adrenaline is a powerful stimulus of glucagon secretion. It acts by activation of b-adrenergic receptors, but the downstream mechanisms have only been partially elucidated. Here, we have examined the effects of adrenaline in mouse and human a-cells by a combination of electrophysiology, imaging of Ca2+ and PKA activity, and hormone release measurements. We found that stimulation of glucagon secretion correlated with a PKA- and EPAC2-dependent (inhibited by PKI and ESI-05, respectively) elevation of [Ca2+]i in a-cells, which occurred without stimulation of electrical activity and persisted in the absence of extracellular Ca2+ but was sensitive to ryanodine, bafilomycin, and thapsigargin. Adrenaline also increased [Ca2+]i in a-cells in human islets. Genetic or pharmacological inhibition of the Tpc2 channel (that mediates Ca2+ release from acidic intracellular stores) abolished the stimulatory effect of adrenaline on glucagon secretion and reduced the elevation of [Ca2+]i. Furthermore, in Tpc2-deficient islets, ryanodine exerted no additive inhibitory effect. These data suggest that b-adrenergic stimulation of glucagon secretion is controlled by a hierarchy of [Ca2+]i signaling in the a-cell that is initiated by cAMP-induced Tpc2-dependent Ca2+ release from the acidic stores and further amplified by Ca2+-induced Ca2+ release from the sarco/endoplasmic reticulum. © 2018 by the American Diabetes Association.
  •  
8.
  • Shigeto, Makoto, et al. (författare)
  • GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation
  • 2015
  • Ingår i: Journal of Clinical Investigation. - : American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:12, s. 4714-4728
  • Tidskriftsartikel (refereegranskat)abstract
    • Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the K-ATP channel blacker tolbutamide, and the L-type Ca2+ channel blacker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of NW-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by beta cells.
  •  
9.
  • Sinnegger-Brauns, MJ, et al. (författare)
  • Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels
  • 2004
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 113:10, s. 1430-1439
  • Tidskriftsartikel (refereegranskat)abstract
    • Ca(v)1.2 and Ca(v)1.3 L-type Ca2+ channels (LTCCs) are believed to underlie Ca2+ currents in brain, pancreatic beta cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause card iovascular (activators and. blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Ca(v)1.2 alpha1 subunits (Ca(v)1.2DHP(-/-)) without affecting function and expression. This allowed separation of the DHP effects of Ca(v)1.2 from those of Ca(v)1.3 and other LTCCs. DHP effects on pancreatic P cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Ca(v)1.2DHP(-/-) mice, which rules out a direct role of Ca(v)1.3 for these physiological processes. Using Ca(v)1.2DHP(-/-) mice, we established DHPs as mood-modifying agents: LTCC activator-induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Ca(v)1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy