SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rossini G) "

Sökning: WFRF:(Rossini G)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Cabra, D. C., et al. (författare)
  • Half-metal phases in a quantum wire with modulated spin-orbit interaction
  • 2017
  • Ingår i: Physical Review B. - 2469-9950. ; 96:20
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a spin filter device based on the interplay of a modulated spin-orbit interaction and a uniform external magnetic field acting on a quantum wire. Half-metal phases, where electrons with only a selected spin polarization exhibit ballistic conductance, can be tuned by varying the magnetic field. These half-metal phases are proven to be robust against electron-electron repulsive interactions. Our results arise from a combination of explicit band diagonalization, bosonization techniques, and extensive density matrix renormalization group computations.
  •  
8.
  •  
9.
  • Schumann, G, et al. (författare)
  • Stratified medicine for mental disorders
  • 2014
  • Ingår i: European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. - : Elsevier BV. - 1873-7862. ; 24:1, s. 5-50
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Raty, S., et al. (författare)
  • Non-invasive electrical brain stimulation for vision restoration after stroke: An exploratory randomized trial (REVIS)
  • 2021
  • Ingår i: Restorative Neurology and Neuroscience. - : IOS Press. - 0922-6028 .- 1878-3627. ; 39:3, s. 221-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Occipital strokes often cause permanent homonymous hemianopia leading to significant disability. In previous studies, non-invasive electrical brain stimulation (NIBS) has improved vision after optic nerve damage and in combination with training after stroke. Objective: We explored different NIBS modalities for rehabilitation of hemianopia after chronic stroke. Methods: In a randomized, double-blinded, sham-controlled, three-armed trial, altogether 56 patients with homonymous hemianopia were recruited. The three experiments were: i) repetitive transorbital alternating current stimulation (rtACS, n=8) vs. rtACS with prior cathodal transcranial direct current stimulation over the intact visual cortex (tDCS/rtACS, n=8) vs. sham (n = 8); ii) rtACS (n = 9) vs. sham (n = 9); and iii) tDCS of the visual cortex (n = 7) vs. sham (n = 7). Visual functions were evaluated before and after the intervention, and after eight weeks follow-up. The primary outcome was change in visual field assessed by high-resolution and standard perimetries. The individual modalities were compared within each experimental arm. Results: Primary outcomes in Experiments 1 and 2 were negative. Only significant between-group change was observed in Experiment 3, where tDCS increased visual field of the contralesional eye compared to sham. tDCS/rtACS improved dynamic vision, reading, and visual field of the contralesional eye, but was not superior to other groups. rtACS alone increased foveal sensitivity, but was otherwise ineffective. All trial-related procedures were tolerated well. Conclusions: This exploratory trial showed safety but no main effect of NIBS on vision restoration after stroke. However, tDCS and combined tDCS/rtACS induced improvements in visually guided performance that need to be confirmed in larger-sample trials.
  •  
18.
  • Xu, J. H., et al. (författare)
  • Adaptive and Maladaptive Brain Functional Network Reorganization After Stroke in Hemianopia Patients: An Electroencephalogram-Tracking Study
  • 2022
  • Ingår i: Brain connectivity. - : Mary Ann Liebert Inc. - 2158-0014 .- 2158-0022. ; 12:8, s. 725-739
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Hemianopia after occipital stroke is believed to be mainly due to local damage at or near the lesion site. However, magnetic resonance imaging studies suggest functional connectivity network (FCN) reorganization also in distant brain regions. Because it is unclear whether reorganization is adaptive or maladaptive, compensating for, or aggravating vision loss, we characterized FCNs electrophysiologically to explore local and global brain plasticity and correlated FCN reorganization with visual performance.Methods: Resting-state electroencephalography (EEG) was recorded in chronic, unilateral stroke patients and healthy age-matched controls (n = 24 each). This study was approved by the local ethics committee. The correlation of oscillating EEG activity was calculated with the imaginary part of coherence between pairs of regions of interest, and FCN graph theory metrics (degree, strength, clustering coefficient) were correlated with stimulus detection and reaction time.Results: Stroke brains showed altered FCNs in the alpha- and low beta-band in numerous occipital, temporal brain structures. On a global level, FCN had a less efficient network organization whereas on the local level node networks were reorganized especially in the intact hemisphere. Here, the occipital network was 58% more rigid (with a more "regular" network structure) whereas the temporal network was 32% more efficient (showing greater "small-worldness"), both of which correlated with worse or better visual processing, respectively.Conclusions: Occipital stroke is associated with both local and global FCN reorganization, but this can be both adaptive and maladaptive. We propose that the more "regular" FCN structure in the intact visual cortex indicates maladaptive plasticity, where less processing efficacy with reduced signal/noise ratio may cause the perceptual deficits in the intact visual field (VF). In contrast, reorganization in intact temporal brain regions is presumably adaptive, possibly supporting enhanced peripheral movement perception. Impact statementThe functional connectivity network (FCN) after occipital stroke changes toward a more "regular" pattern. It is maladaptive in the intact occipital region, possibly leading to creating perceptual deficits causing spatiotemporal visual impairments in the "intact" but crowded visual field. The FCN can also be "adaptive," enabling temporal gyrus structures to compensate for the loss of vision.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy