SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosso Dominic) "

Sökning: WFRF:(Rosso Dominic)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huner, Norman P A, et al. (författare)
  • Photoprotection of Photosystem II: Reaction center quenching versus antenna quenching
  • 2006
  • Ingår i: Photoprotection, Photoinhibition, Gene Regulation and Environment. - : Springer. - 9781402035647 ; , s. 155-174
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Photoprotection, Photoinhibition, Gene Regulation, and Environment examines the processes whereby plants monitor environmental conditions and orchestrate their response to change, an ability paramount to the life of all plants. "Excess light", absorbed by the light-harvesting systems of photosynthetic organisms, is an integrative indicator of the environment, communicating the presence of intense light and any conditions unfavorable for growth and photosynthesis. Key plant responses are photoprotection and photoinhibition. In this volume, the dual role of photoprotective responses in the preservation of leaf integrity and in redox signaling networks modulating stress acclimation, growth, and development is addressed. In addition, the still unresolved impact of photoinhibition on plant survival and productivity is discussed. Specific topics include dissipation of excess energy via thermal and other pathways, scavenging of reactive oxygen by antioxidants, proteins key to photoprotection and photoinhibition, peroxidation of lipids, as well as signaling by reactive oxygen, lipid-derived messengers, and other messengers that modulate gene expression. Approaches include biochemical, physiological, genetic, molecular, and field studies, addressing intense visible and ultraviolet light, winter conditions, nutrient deficiency, drought, and salinity. This book is directed toward advanced undergraduate students, graduate students, and researchers interested in Plant Ecology, Stress Physiology, Plant Biochemistry, Integrative Biology, and Photobiology.
  •  
2.
  • Pocock, Tessa, et al. (författare)
  • Chlamydomonas raudensis Ettl. (UWO241) exhibits the capacity for rapid D1 repair in response to chronic photoinhibition at low temperature
  • 2007
  • Ingår i: Journal of Phycology. - : Wiley. - 0022-3646 .- 1529-8817. ; 43:5, s. 924-936
  • Tidskriftsartikel (refereegranskat)abstract
    • Maximum photosynthetic capacity indicates that the Antarctic psychrophile Chlamydomonas raudensis H. Ettl UWO 241 is photosynthetically adapted to low temperature. Despite this finding, C. raudensis UWO 241 exhibited greater sensitivity to low-temperature photoinhibition of PSII than the mesophile Chlamydomonas reinhardtii P. A. Dang. However, in contrast with results for C. reinhardtii, the quantum requirement to induce 50% photoinhibition of PSII in C. raudensis UWO 241 (50 μmol photons) was comparable at either 8°C or 29°C. To our knowledge, this is the first report of a photoautotroph whose susceptibility to photoinhibition is temperature independent. In contrast, the capacity of the psychrophile to recover from photoinhibition of PSII was sensitive to temperature and inhibited at 29°C. The maximum rate of recovery from photoinhibition of the psychrophile at 8°C was comparable to the maximum rate of recovery of the mesophile at 29°C. We provide evidence that photoinhibition in C. raudensis UWO 241 is chronic rather than dynamic. The photoinhibition-induced decrease in the D1 content in C. raudensis recovered within 30 min at 8°C. Both the recovery of the D1 content as well as the initial fast phase of the recovery of Fv/Fm at 8°C were inhibited by lincomycin, a chloroplast protein synthesis inhibitor. We conclude that the susceptibility of C. raudensis UWO 241 to low-temperature photoinhibition reflects its adaptation to low growth irradiance, whereas the unusually rapid rate of recovery at low temperature exhibited by this psychrophile is due to a novel D1 repair cycle that is adapted to and is maximally operative at low temperature.
  •  
3.
  •  
4.
  • Rosso, Dominic, et al. (författare)
  • IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 142:2, s. 574-85
  • Tidskriftsartikel (refereegranskat)abstract
    • IMMUTANS (IM) encodes a thylakoid membrane protein that has been hypothesized to act as a terminal oxidase that couples the reduction of O2 to the oxidation of the plastoquinone (PQ) pool of the photosynthetic electron transport chain. Because IM shares sequence similarity to the stress-induced mitochondrial alternative oxidase (AOX), it has been suggested that the protein encoded by IM acts as a safety valve during the generation of excess photosynthetically generated electrons. We combined in vivo chlorophyll fluorescence quenching analyses with measurements of the redox state of P700 to assess the capacity of IM to compete with photosystem I for intersystem electrons during steady-state photosynthesis in Arabidopsis (Arabidopsis thaliana). Comparisons were made between wild-type plants, im mutant plants, as well as transgenics in which IM protein levels had been overexpressed six (OE-6x) and 16 (OE-16x) times. Immunoblots indicated that IM abundance was the only major variant that we could detect between these genotypes. Overexpression of IM did not result in increased capacity to keep the PQ pool oxidized compared to either the wild type or im grown under control conditions (25°C and photosynthetic photon flux density of 150 µmol photons m–2 s–1). Similar results were observed either after 3-d cold stress at 5°C or after full-leaf expansion at 5°C and photosynthetic photon flux density of 150 µmol photons m–2 s–1. Furthermore, IM abundance did not enhance protection of either photosystem II or photosystem I from photoinhibition at either 25°C or 5°C. Our in vivo data indicate that modulation of IM expression and polypeptide accumulation does not alter the flux of intersystem electrons to P700+ during steady-state photosynthesis and does not provide any significant photoprotection. In contrast to AOX1a, meta-analyses of published Arabidopsis microarray data indicated that IM expression exhibited minimal modulation in response to myriad abiotic stresses, which is consistent with our functional data. However, IM exhibited significant modulation in response to development in concert with changes in AOX1a expression. Thus, neither our functional analyses of the IM knockout and overexpression lines nor meta-analyses of gene expression support the model that IM acts as a safety valve to regulate the redox state of the PQ pool during stress and acclimation. Rather, IM appears to be strongly regulated by developmental stage of Arabidopsis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy