SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roux Fabrice) "

Sökning: WFRF:(Roux Fabrice)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Platt, Alexander, et al. (författare)
  • The Scale of Population Structure in Arabidopsis thaliana
  • 2010
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 6:2, s. e1000843-
  • Tidskriftsartikel (refereegranskat)abstract
    • The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales.
  •  
2.
  • Quesnel, Etienne, et al. (författare)
  • Graphene-based technologies for energy applications, challenges and perspectives
  • 2015
  • Ingår i: Current Opinion in Chemical Engineering. - : IOP Publishing. - 2211-3398. ; 2:3, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report on technology developments implemented into the Graphene Flagship European project for the integration of graphene and graphene-related materials (GRMs) into energy application devices. Many of the technologies investigated so far aim at producing composite materials associating graphene or GRMs with either metal or semiconducting nanocrystals or other carbon nanostructures (e.g., CNT, graphite). These composites can be used favourably as hydrogen storage materials or solar cell absorbers. They can also provide better performing electrodes for fuel cells, batteries, or supercapacitors. For photovoltaic (PV) electrodes, where thin layers and interface engineering are required, surface technologies are preferred. We are using conventional vacuum processes to integrate graphene as well as radically new approaches based on laser irradiation strategies. For each application, the potential of implemented technologies is then presented on the basis of selected experimental and modelling results. It is shown in particular how some of these technologies can maximize the benefit taken from GRM integration. The technical challenges still to be addressed are highlighted and perspectives derived from the running works emphasized.
  •  
3.
  • Thiergart, Thorsten, et al. (författare)
  • Root microbiota assembly and adaptive differentiation among European Arabidopsis populations
  • 2020
  • Ingår i: Nature Ecology & Evolution. - : NATURE PUBLISHING GROUP. - 2397-334X. ; 4:1, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Across large spatial scales, climate is more important than soil conditions for plant adaptation and variation in root-associated filamentous eukaryotic communities. Factors that drive continental-scale variation in root microbiota and plant adaptation are poorly understood. We monitored root-associated microbial communities in Arabidopsis thaliana and co-occurring grasses at 17 European sites across 3 years. We observed strong geographic structuring of the soil biome, but not of the root microbiota. A few phylogenetically diverse and geographically widespread bacteria consistently colonized plant roots. Among-site and across-year similarity in microbial community composition was stronger for the bacterial root microbiota than for filamentous eukaryotes. In a reciprocal transplant between two A. thaliana populations in Sweden and Italy, we uncoupled soil from location effects and tested their contributions to root microbiota variation and plant adaptation. Community differentiation in plant roots was explained primarily by location for filamentous eukaryotes and by soil origin for bacteria, whereas host genotype effects were marginal. Strong local adaptation between the two A. thaliana populations was observed, with differences in soil properties and microbes of little importance for the observed magnitude of adaptive differentiation. Our results suggest that, across large spatial scales, climate is more important than soil conditions for plant adaptation and variation in root-associated filamentous eukaryotic communities, whereas soil properties are primary drivers of bacterial community differentiation in roots.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy