SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rouxel Olivier) "

Sökning: WFRF:(Rouxel Olivier)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Callac, Nolwenn, et al. (författare)
  • Biogeochemical insights into microbe-mineral-fluid interactions in hydrothermal chimneys using enrichment culture
  • 2015
  • Ingår i: Extremophiles. - : Springer Science and Business Media LLC. - 1431-0651 .- 1433-4909. ; 19:3, s. 597-617
  • Tidskriftsartikel (refereegranskat)abstract
    • Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems.
  •  
2.
  • Callac, Nolwenn, et al. (författare)
  • Pyrococcus kukulkanii sp nov., a hyperthermophilic, piezophilic archaeon isolated from a deep-sea hydrothermal vent
  • 2016
  • Ingår i: International Journal of Systematic and Evolutionary Microbiology. - : Microbiology Society. - 1466-5026 .- 1466-5034. ; 66, s. 3142-3149
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel hyperthermophilic, piezophilic, anaerobic archaeon, designated NCB100(T), was isolated from a hydrothermal vent flange fragment collected in the Guaymas basin at the hydrothermal vent site named 'Rebecca's Roost' at a depth of 1997 m. Enrichment and isolation were performed at 100 degrees C under atmospheric pressure. Cells of strain NCB100(T) were highly motile, irregular cocci with a diameter of -1 mu m. Growth was recorded at temperatures between 70 and 112 degrees C (optimum 105 degrees C) and hydrostatic pressures of 0.1-80 MPa (optimum 40-50 MPa). Growth was observed at pH 3.5-8.5 (optimum pH 7) and with 1.5-7% NaCl (optimum at 2.5-3 %). Strain NCB100(T) was a strictly anaerobic chemo-organoheterotroph and grew on complex proteinaceous substrates such as yeast extract, peptone and tryptone, as well as on glycogen and starch. Elemental sulfur was required for growth and was reduced to hydrogen sulfide. The fermentation products from complex proteinaceous substrates were CO2 and H-2. The G+C content of the genomic DNA was 41.3 %. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NCB100(T) belongs to the genus Pyrococcus, showing 99% similarity with the other described species of the genus Pyrococcus. On the basis of physiological characteristics, DNA G+C content, similarity level between ribosomal proteins and an average nucleotide identity value of 79 %, strain NCB100(T) represents a novel species for which the name Pyrococcus kukulkanii sp. nov. is proposed. The type strain is NCB100(T) (=DSM 101590(T) =Souchotheque de Bretagne BG1337(T)).
  •  
3.
  • Canfield, Donald E., et al. (författare)
  • Oxygen dynamics in the aftermath of the Great Oxidation of the Earth’s atmosphere.
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:42, s. 16736-16741
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxygen content of Earth’s atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth’s oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth’s oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest–lived positive ?13C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years.
  •  
4.
  •  
5.
  • El Albani, Abderrazak, et al. (författare)
  • The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:6:e99438, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth’s surface environments following the first appreciable rise of free atmospheric oxygen concentrations ~2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rodshaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.
  •  
6.
  • Little, Crispin T. S., et al. (författare)
  • A late Paleoproterozoic (1.74 Ga) deep-sea, low-temperature, iron-oxidizing microbial hydrothermal vent community from Arizona, USA
  • 2021
  • Ingår i: Geobiology. - : John Wiley & Sons. - 1472-4677 .- 1472-4669. ; 19:3, s. 228-249
  • Tidskriftsartikel (refereegranskat)abstract
    • Modern marine hydrothermal vents occur in a wide variety of tectonic settings and are characterized by seafloor emission of fluids rich in dissolved chemicals and rapid mineral precipitation. Some hydrothermal systems vent only low-temperature Fe-rich fluids, which precipitate deposits dominated by iron oxyhydroxides, in places together with Mn-oxyhydroxides and amorphous silica. While a proportion of this mineralization is abiogenic, most is the result of the metabolic activities of benthic, Fe-oxidizing bacteria (FeOB), principally belonging to the Zetaproteobacteria. These micro-organisms secrete micrometer-scale stalks, sheaths, and tubes with a variety of morphologies, composed largely of ferrihydrite that act as sacrificial structures, preventing encrustation of the cells that produce them. Cultivated marine FeOB generally require neutral pH and microaerobic conditions to grow. Here, we describe the morphology and mineralogy of filamentous microstructures from a late Paleoproterozoic (1.74 Ga) jasper (Fe-oxide- silica) deposit from the Jerome area of the Verde mining district in central Arizona, USA, that resemble the branching tubes formed by some modern marine FeOB. On the basis of this comparison, we interpret the Jerome area filaments as having formed by FeOB on the deep seafloor, at the interface of weakly oxygenated seawater and low-temperature Fe-rich hydrothermal fluids. We compare the Jerome area filaments with other purported examples of Precambrian FeOB and discuss the implications of their presence for existing redox models of Paleoproterozoic oceans during the “Boring Billion.”
  •  
7.
  • Marin-Carbonne, Johanna, et al. (författare)
  • Coupled Fe and S isotope variations in pyrite nodules from Archean shale
  • 2014
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 392, s. 67-79
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron and sulfur isotope compositions recorded in ancient rocks and minerals such as pyrite (FeS2) have been widely used as a proxy for early microbial metabolisms and redox evolution of the oceans. However, most previous studies focused on only one of these isotopic systems. Herein, we illustrate the importance of in-situ and coupled study of Fe and S isotopes on two pyrite nodules in a c. 2.7 Ga shale from the Bubi Greenstone Belt (Zimbabwe). Fe and S isotope compositions were measured both by bulk-sample mass spectrometry techniques and by ion microprobe in-situ methods (Secondary Ion Mass Spectrometry, SIMS). Spatially-resolved analysis across the nodules shows a large range of variations at micrometer-scale for both Fe and S isotope compositions, with delta Fe-56 and delta S-34 values from -2.1 to +0.7 parts per thousand and from -0.5 to +8.2 parts per thousand, respectively, and Delta S-33 values from -1.6 to +2.9 parts per thousand. The Fe and S isotope variations in these nodules cannot be explained by tandem operation of Dissimilatory Iron Reduction (DIR) and Bacterial Sulfate Reduction (BSR) as was previously proposed, but rather they reflect the contributions of different Fe and S sources during a complex diagenetic history. Pyrite formed from two different mineral precursors: (1) mackinawite precipitated in the water column, and (2) greigite formed in the sediment during early diagenesis. The in-situ analytical approach reveals a complex history of the pyrite nodule growth and allows us to better constrain environmental conditions during the Archean.
  •  
8.
  • Neubeck, Anna, et al. (författare)
  • Ni isotope fractionation during coprecipitation of Fe(III)(oxyhydr)oxides in Si solutions
  • 2021
  • Ingår i: Chemie der Erde. - : Elsevier BV. - 0009-2819 .- 1611-5864. ; 81:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dramatic decline in aqueous Ni concentrations in the Archean oceans during the Great Oxygenation Event is evident in declining solid phase Ni concentrations in Banded Iron Formations (BIFs) at the time. Several experiments have been performed to identify the main removal mechanisms of Ni from seawater into BIFs, whereby adsorption of Ni onto ferrihydrites has shown to be an efficient process. Ni isotopic measurements have shown limited isotopic fraction during this process, however, most experiments have been conducted in simple solutions containing varying proportions of dissolved Fe and Ni as NO3 salts, as opposed to Cl salts which are dominant in seawater. Further, Archean oceans were, before the advent of siliceous eukaryotes, likely saturated with amorphous Si as seen in the interlayered chert layers within BIFs. Despite Si being shown to greatly affect the Ni elemental partitioning onto ferrihydrite solids, no studies have been made on the effects of Si on the Ni isotope fractionation. Here we report results of multiple coprecipitation experiments where ferrihydrite precipitated in mixed solutions with Ni and Si. Ni concentrations in the experiments ranged between 200 and 4000 nM for fixed concentrations of Si at either 0, 0.67 or 2.2 mM. The results show that Si at these concentrations has a limited effect on the Ni isotope fractionation during coprecipitation of ferrihydrite. At 0.67 mM, the saturation concentration of cristobalite, the isotopic fractionation factors between the precipitating solid and experimental fluid are identical to experiments not containing Si (0.34 +/- 0.17 parts per thousand). At 2.2 mM Si, and the saturation concentration of amorphous silica, however, the Ni isotopic composition of the ferrihydrite solids deviate to more negative values and show a larger variation than at low or no Si, and some samples show fractionation of up to 0.5 parts per thousand. Despite this seemingly more unstable fractionation behaviour, the combined results indicate that even at as high concentrations of Si as 2.2 mM, the delta Ni-60 values of the forming ferrihydrites does not change much. The results of our study implicate that Si may not be a major factor in fractionating stable Ni isotopes, which would make it easier to interpret future BIF record and reconstruct Archean ocean chemistry.
  •  
9.
  • Neubeck, Anna, et al. (författare)
  • δ60Ni and δ13C Composition of Serpentinites and Carbonates of the Tekirova Ophiolite, Turkey, and Meatiq Ophiolite, Egypt
  • 2021
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nickel isotope fractionation patterns in continental ultramafic environments generally show a depletion of delta Ni-60 in weathered rocks and an enrichment in bedrock samples. The present study focuses on stable Ni isotope fractionation patterns in carbonate-rich, ultramafic ophiolite samples with concomitant fluids at an active serpentinization site in southwestern Turkey, with a comparison to results from an inactive serpentinization site in the Eastern Desert of Egypt with carbonate-rich samples. All solid phase data from the inactive serpentinization area are consistent with previously reported values from serpentinites, whereas the solid precipitates in the active area (SW Turkey) give values slightly heavier than previously reported data. However, the Ni isotopic signatures in the active serpentinization system likely reflect the scavenging of light Ni by iron oxide and carbonate precipitation, as has been previously demonstrated in laboratory coprecipitation experiments. It is also possible that the active system results resemble previous laboratory experimental results that show a relatively strong initial fractionation between fluids and solids, which then diminishes with time due to aging of the precipitates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy