SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roy Ananya) "

Sökning: WFRF:(Roy Ananya)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attarha, Sanaz, et al. (författare)
  • Mast cells modulate proliferation, migration and sternness of glioma cells through downregulation of GSK3 beta expression and inhibition of STAT3 activation
  • 2017
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 37, s. 81-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) heterogeneity is the main obstacle to efficient treatment due to the existence of sub population of cells with increased tumorigenicity and network of tumor associated parenchymal cells in the tumor microenvironment. We previously demonstrated that mast cells (MCs) infiltrate mouse and human gliomas in response to variety of signals in a glioma grade-dependent manner. However, the role of MCs in glioma development and the mechanisms behind MCs-glioma cells interaction remain unidentified. In the present study, we show that MCs upon activation by glioma cells produce soluble factors including IL-6, which are documented to be involved in cancer-related activities. We observe 'tumor educated' MCs decrease glioma cell proliferation and migration, reduce self-renewal capacity and expression of stemness markers but in turn promote glioma cell differentiation. 'Tumor educated' MC derived mediators exert these effects via inactivation of STAT3 signaling pathway through GSK3 beta down-regulation. We identified 'tumor educated' MC derived IL-6 as one of the contributors among the complex mixture of MCs mediators, to be partially involved in the observed MC induced biological effect on glioma cells. Thus, MC mediated abolition of STAT3 signaling hampers glioma cell proliferation and migration by suppressing their stemness and inducing differentiation via down-regulation of GSK3 beta expression. Targeting newly identified inflammatory MC-STAT3 axis could contribute to patient tailored therapy and unveil potential future therapeutic opportunities for patients.
  •  
2.
  • Bose, Debopriya, et al. (författare)
  • Switchable tetraplex elements in the heterogeneous nuclear ribonucleoprotein K promoter: micro-environment dictated structural transitions of G/C rich elements
  • 2024
  • Ingår i: Journal of Biomolecular Structure and Dynamics. - : Taylor & Francis. - 0739-1102 .- 1538-0254.
  • Tidskriftsartikel (refereegranskat)abstract
    • We have elucidated the hnRNP K promoter as a hotspot for tetraplex-based molecular switches receptive to micro-environmental stimuli. We have characterised the structural features of four tetraplex-forming loci and identified them as binding sites of transcription factors. These segments form either G-quadruplex or i-motif structures, the structural dynamicity of which has been studied in depth via several biophysical techniques. The tetraplexes display high dynamicity and are influenced by both pH and KCl concentrations in vitro. The loci complementary to these sequences form additional non-canonical secondary structures. In the cellular context, the most eminent observation of this study is the binding of hnRNP K to the i-motif forming sequences in its own promoter. We are the first to report a probable transcriptional autoregulatory function of hnRNP K in coordination with higher-order DNA structures. Herein, we also report the positive interaction of the endogenous tetraplexes with Sp1, a well-known transcriptional regulator. Treatment with tetraplex-specific small molecule ligands further uncovered G-quadruplexes’ functioning as repressors and i-motifs as activators in this context. Together, our findings strongly indicate the critical regulatory role of the identified tetraplex elements in the hnRNP K promoter. Communicated by Ramaswamy H. Sarma.
  •  
3.
  •  
4.
  • Fu, Zhirong, et al. (författare)
  • Highly Selective Cleavage of Cytokines and Chemokines by the Human Mast Cell Chymase and Neutrophil Cathepsin G
  • 2017
  • Ingår i: Journal of Immunology. - : AMER ASSOC IMMUNOLOGISTS. - 0022-1767 .- 1550-6606. ; 198:4, s. 1474-1483
  • Tidskriftsartikel (refereegranskat)abstract
    • Human mast cell chymase (HC) and human neutrophil cathepsin G (hCG) show relatively similar cleavage specificities: they both have chymotryptic activity but can also cleave efficiently after leucine. Their relatively broad specificity suggests that they may cleave almost any substrate if present in high enough concentrations or for a sufficiently long time. A number of potential substrates have been identified for these enzymes and, recently, these enzymes have also been implicated in regulating cytokine activity by cleaving numerous cytokines and chemokines. To obtain a better understanding of their selectivity for various potential in vivo substrates, we analyzed the cleavage of a panel of 51 active recombinant cytokines and chemokines. Surprisingly, our results showed a high selectivity of HC; only 4 of 51 of these proteins were substantially cleaved. hCG cleaved a few additional proteins, although this occurred after adding almost equimolar amounts of enzyme to target. The explanation for this wide difference in activity against peptides or other linear substrates compared with native proteins is most likely related to the reduced accessibility of the enzymes to potential cleavage sites in folded proteins. In this article, we present evidence that sites not exposed on the surface of the protein are not cleaved by the enzyme. Interestingly, both enzymes readily cleaved IL-18 and IL-33, two IL-1-related alarmins, as well as the cytokine IL-15, which is important for T cell and NK cell homeostasis. Cleavage of the alarmins by HC and hCG suggests a function in regulating excessive inflammation.
  •  
5.
  • Iniguez-Munoz, Sandra, et al. (författare)
  • Hidden secrets of the cancer genome : unlocking the impact of non-coding mutations in gene regulatory elements
  • 2024
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 81
  • Forskningsöversikt (refereegranskat)abstract
    • Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
  •  
6.
  •  
7.
  • Roy, Ananya, et al. (författare)
  • Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells
  • 2015
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 6:27, s. 23647-23661
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) is a high-grade glioma with a complex microenvironment, including various inflammatory cells and mast cells (MCs) as one of them. Previously we had identified glioma grade-dependent MC recruitment. In the present study we investigated the role of plasminogen activator inhibitor 1 (PAI-1) in MC recruitment.PAI-1, a primary regulator in the fibrinolytic cascade is capable of forming a complex with fibrinolytic system proteins together with low-density lipoprotein receptor-related protein 1 (LRP1). We found that neutralizing PAI-1 attenuated infiltration of MCs. To address the potential implication of LRP1 in this process, we used a LRP1 antagonist, receptor-associated protein (RAP), and demonstrated the attenuation of MC migration. Moreover, a positive correlation between the number of MCs and the level of PAI-1 in a large cohort of human glioma samples was observed. Our study demonstrated the expression of LRP1 in human MC line LAD2 and in MCs in human high-grade glioma. The activation of potential PAI-1/LRP1 axis with purified PAI-1 promoted increased phosphorylation of STAT3 and subsequently exocytosis in MCs.These findings indicate the influence of the PAI-1/LRP1 axis on the recruitment of MCs in glioma. The connection between high-grade glioma and MC infiltration could contribute to patient tailored therapy and improve patient stratification in future therapeutic trials.
  •  
8.
  •  
9.
  •  
10.
  • Roy, Ananya, et al. (författare)
  • Mast Cell Chymase Degrades the Alarmins Heat Shock Protein 70, Biglycan, HMGB1, and Interleukin-33 (IL-33) and Limits Danger-induced Inflammation
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 289:1, s. 237-250
  • Tidskriftsartikel (refereegranskat)abstract
    • During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(W-sash)-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF- levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation.
  •  
11.
  • Roy, Ananya, et al. (författare)
  • Mast Cell Infiltration in Human Brain Metastases Modulates the Microenvironment and Contributes to the Metastatic Potential
  • 2017
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Metastatic brain tumors continue to be a clinical problem, despite new therapeutic advances in cancer treatment. Brain metastases (BMs) are among the most common mass lesions in the brain that are resistant to chemotherapies, have a very poor prognosis, and currently lack any efficient diagnostic tests. Predictions estimate that about 40% of lung and breast cancer patients will develop BM. Despite this, very little is known about the immunological and genetic aberrations that drive tumorigenesis in BM. In this study, we demonstrate the infiltration of mast cells (MCs) in a large cohort of human BM samples with different tissues of origin for primary cancer. We applied patient-derived BM cell models to the study of BM cell-MC interactions. BM cells when cocultured with MCs demonstrate enhanced growth and self-renewal capacity. Gene set enrichment analyses indicate increased expression of signal transduction and transmembrane proteins related genes in the cocultured BM cells. MCs exert their effect by release of mediators such as IL-8, IL-10, matrix metalloprotease 2, and vascular endothelial growth factor, thereby permitting metastasis. In conclusion, we provide evidence for a role of MCs in BM. Our findings indicate MCs' capability of modulating gene expression in BM cells and suggest that MCs can serve as a new target for drug development against metastases in the brain.
  •  
12.
  • Roy, Ananya (författare)
  • Mast Cells as Sentinels : Role of serglycin and mast cell proteases in infection and inflammation
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mast cells (MCs), normally classified into connective tissue MCs and mucosal MCs, are highly granulated cells found in the interface between the interior and the exterior environment of our body, e.g. skin, airways and gastro-intestinal tract. They react to bacteria, parasites, viruses, and allergens by degranulation and release of premade and newly synthesized inflammatory mediators. The MC-proteases (tryptases, chymases and carboxypeptidase A), histamine and serglycin (SG) proteoglycans are premade mediators. Among these, SG is also expressed in a variety of other immune and non-immune cells. Heparin and chondroitin sulphate glycosaminoglycan chains confer highly negative charge to SG, by which MC-proteases are retained in secretory granules. Deletion of SG cause impaired packing and storage of most MC-proteases. During challenge with Toxoplasma gondii the SG-deficient mice showed significant lower inflammatory cytokine levels in comparison to wild-type mice. Results were consistently similar in vitro, bringing forward the importance of SG in inflammatory cytokine and innate immune responses towards T. gondii. Infection with Trichinella spiralis in SG-/- mice caused increased intestinal enteropathy, a tendency of delayed worm expulsion and increased larval burden in the muscle tissue as compared to wild-type animals. An altered TH2 cytokine response was also observed, and all these effects were not repaired by wild-type MC reconstitution of the SG-/- mice. Altogether, our results suggest that SG is important for tissue homeostasis, and that SG expressing cells seem capable of switching from a SG-dependent storage mode to a SG-independent secretory mode upon infection.The chymase (MCPT4) expressed by connective tissue MC has been implicated to have a protective role during infection and in limiting inflammation. We explored a protective role by inducing T. gondii infection in the Mcpt4-null mice, and found MCPT4-mediated recruitment of neutrophils and eosinophils via control of cytokine signaling. Endogenous proteins “alarmins” released by dead cells can trigger tissue and cell damage. We conclusively show that chymase efficiently degrades Hsp70 both in vitro and in vivo and that the degradation of other alarmins, e.g. HMGB1, biglycan and IL-33 may also depend on chymase.
  •  
13.
  • Roy, Ananya, et al. (författare)
  • Serglycin as a potential biomarker for glioma : association of serglycin expression, extent of mast cell recruitment and glioblastoma progression
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:15, s. 24815-24827
  • Tidskriftsartikel (refereegranskat)abstract
    • Serglycin is an intracellular proteoglycan with a unique ability to adopt highly divergent structures by glycosylation with variable types of glycosaminoglycans (GAGs) when expressed by different cell types. Serglycin is overexpressed in aggressive cancers suggesting its protumorigenic role. In this study, we explored the expression of serglycin in human glioma and its correlation with survival and immune cell infiltration. We demonstrate that serglycin is expressed in glioma and that increased expression predicts poor survival of patients. Analysis of serglycin expression in a large cohort of low- and high-grade human glioma samples reveals that its expression is grade dependent and is positively correlated with mast cell (MC) infiltration. Moreover, serglycin expression in patient-derived glioma cells is significantly increased upon MC co-culture. This is also accompanied by increased expression of CXCL12, CXCL10, as well as markers of cancer progression, including CD44, ZEB1 and vimentin.In conclusion, these findings indicate the importance of infiltrating MCs in glioma by modulating signaling cascades involving serglycin, CD44 and ZEB1. The present investigation reveals serglycin as a potential prognostic marker for glioma and demonstrates an association with the extent of MC recruitment and glioma progression, uncovering potential future therapeutic opportunities for patients.
  •  
14.
  • Roy, Ananya, et al. (författare)
  • Serglycin proteoglycans limit enteropathy in Trichinella spiralis-infected mice
  • 2016
  • Ingår i: BMC Immunology. - : Springer Science and Business Media LLC. - 1471-2172. ; 17
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Serglycin proteoglycans are essential for maturation of secretory granules and for the correct granular storage of cationic proteases in hematopoietic cells, e.g. mast cells. However, little is known about the in vivo functions of serglycin proteoglycans during infection. Here we investigated the potential role of serglycin proteoglycans in host defense after infection with the nematode Trichinella spiralis. Results: Twelve days post infection lack of serglycin proteoglycans caused significantly increased enteropathy. The serglycin-deficient mice showed significantly increased intestinal worm burden, reduced recruitment of mast cells to the intestinal crypts, decreased levels of the mast cell proteases MCPT5 and MCPT6 in intestinal tissue, decreased serum levels of TNF-alpha, IL-1 beta, IL-10 and IL-13, increased levels of IL-4 and total IgE in serum, and increased intestinal levels of the neutrophil markers myeloperoxidase and elastase, as compared to wild type mice. At five weeks post infection, increased larvae burden and inflammation were seen in the muscle tissue of the serglycin-deficient mice. Conclusions: Our results demonstrate that the serglycin-deficient mice were more susceptible to T. spiralis infection and displayed an unbalanced immune response compared to wild type mice. These findings point to an essential regulatory role of serglycin proteoglycans in immunity.
  •  
15.
  •  
16.
  • Roy, Ananya, et al. (författare)
  • Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In hematopoietic cells, serglycin proteoglycans mainly contribute to proper storage and secretion of inflammatory mediators via their negatively charged glycosaminoglycans. Serglycin proteoglycans are also expressed in cancer cells where increased expression has been linked to poor prognosis. However, the serglycin-dependent mediators promoting cancer progression remain to be determined. In the present study we report that genetic ablation of serglycin proteoglycan completely blocks lung metastasis in the MMTV-PyMT-driven mouse breast cancer model, while serglycin-deficiency did not affect primary tumour growth or number of mammary tumours. Although E-cadherin expression was higher in the serglycin-deficient primary tumour tissue, indicating reduced invasiveness, serglycin-deficient tumour cells were still detected in the circulation. These data suggest that serglycin proteoglycans play a role in extravasation as well as colonization and growth of metastatic cells. A microarray expression analysis and functional annotation of differentially expressed genes identified several biological pathways where serglycin may be important. Our results suggest that serglycin and serglycin-dependent mediators are potential drug targets to prevent metastatic disease/dissemination of cancer.
  •  
17.
  • Roy, Ananya, et al. (författare)
  • Using evolutionary constraint to define novel candidate driver genes in medulloblastoma
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 120:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Current knowledge of cancer genomics remains biased against noncoding mutations. To systematically search for regulatory noncoding mutations, we assessed mutations in conserved positions in the genome under the assumption that these are more likely to be functional than mutations in positions with low conservation. To this end, we use whole-genome sequencing data from the International Cancer Genome Consortium and combined it with evolutionary constraint inferred from 240 mammals, to identify genes enriched in noncoding constraint mutations (NCCMs), mutations likely to be regulatory in nature. We compare medulloblastoma (MB), which is malignant, to pilocytic astrocytoma (PA), a primarily benign tumor, and find highly different NCCM frequencies between the two, in agreement with the fact that malignant cancers tend to have more mutations. In PA, a high NCCM frequency only affects the BRAF locus, which is the most commonly mutated gene in PA. In contrast, in MB, >500 genes have high levels of NCCMs. Intriguingly, several loci with NCCMs in MB are associated with different ages of onset, such as the HOXB cluster in young MB patients. In adult patients, NCCMs occurred in, e.g., the WASF-2/ AHDC1/FGR locus. One of these NCCMs led to increased expression of the SRC kinase FGR and augmented responsiveness of MB cells to dasatinib, a SRC kinase inhibitor. Our analysis thus points to different molecular pathways in different patient groups. These newly identified putative candidate driver mutations may aid in patient stratification in MB and could be valuable for future selection of personalized treatment options.
  •  
18.
  • Ruiz-Moreno, Cristian, et al. (författare)
  • Harmonized single-cell landscape, tumor architecture, and intercellular crosstalk ofIDH-wildtype glioblastoma
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Glioblastoma, isocitrate dehydrogenase (IDH)-wildtype (hereafter, GB), is an aggressivebrain malignancy associated with a dismal prognosis and poor quality of life. Single-cellRNA sequencing has aided in grasping the complexity of the cell states and dynamic changesin GB. Large-scale data integration can help to uncover unexplored tumor pathobiology.Here, we resolved the composition of the tumor milieu and created a cellular map of GB(‘GBmap’), a curated resource that harmonizes 26 datasets, gathering 240 patients andspanning over 1.1 million cells. We showcase the applications of our resource for referencemapping, transfer learning, and biological discoveries. Reconstructing the tumor architectureusing spatially resolved transcriptomics unveiled consistent niches across patients and theirorganizational gradient. Our findings shed light on specific crosstalk within GB niches,including the intricate proangiogenic signaling. The GBmap represents a framework thatallows the streamlined integration and interpretation of new data and provides a platform forexploratory analysis, hypothesis generation, and testing.
  •  
19.
  • Sakthikumar, Sharadha, et al. (författare)
  • Whole-genome sequencing of glioblastoma reveals enrichment of non-coding constraint mutations in known and novel genes
  • 2020
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundGlioblastoma (GBM) has one of the worst 5-year survival rates of all cancers. While genomic studies of the disease have been performed, alterations in the non-coding regulatory regions of GBM have largely remained unexplored. We apply whole-genome sequencing (WGS) to identify non-coding mutations, with regulatory potential in GBM, under the hypothesis that regions of evolutionary constraint are likely to be functional, and somatic mutations are likely more damaging than in unconstrained regions.ResultsWe validate our GBM cohort, finding similar copy number aberrations and mutated genes based on coding mutations as previous studies. Performing analysis on non-coding constraint mutations and their position relative to nearby genes, we find a significant enrichment of non-coding constraint mutations in the neighborhood of 78 genes that have previously been implicated in GBM. Among them, SEMA3C and DYNC1I1 show the highest frequencies of alterations, with multiple mutations overlapping transcription factor binding sites. We find that a non-coding constraint mutation in the SEMA3C promoter reduces the DNA binding capacity of the region. We also identify 1776 other genes enriched for non-coding constraint mutations with likely regulatory potential, providing additional candidate GBM genes. The mutations in the top four genes, DLX5, DLX6, FOXA1, and ISL1, are distributed over promoters, UTRs, and multiple transcription factor binding sites.ConclusionsThese results suggest that non-coding constraint mutations could play an essential role in GBM, underscoring the need to connect non-coding genomic variation to biological function and disease pathology.
  •  
20.
  •  
21.
  •  
22.
  • Sullivan, Patrick F., et al. (författare)
  • Leveraging base-pair mammalian constraint to understand genetic variation and human disease
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6643, s. 367-
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
  •  
23.
  • Svanberg, Sofie, et al. (författare)
  • Mast Cells Limit Ear Swelling Independently of the Chymase Mouse Mast Cell Protease 4 in an MC903-Induced Atopic Dermatitis-Like Mouse Model
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Atopic dermatitis (AD) is a complex, often lifelong allergic disease with severe pruritus affecting around 10% of both humans and dogs. To investigate the role of mast cells (MCs) and MC-specific proteases on the immunopathogenesis of AD, a vitamin D3-analog (MC903) was used to induce clinical AD-like symptoms in c-kit-dependent MC-deficient Wsh−/− and the MC protease-deficient mMCP-4−/−, mMCP-6−/−, and CPA3−/− mouse strains. MC903-treatment on the ear lobe increased clinical scores and ear-thickening, along with increased MC and granulocyte infiltration and activity, as well as increased levels of interleukin 33 (IL-33) locally and thymic stromal lymphopoietin (TSLP) both locally and systemically. The MC-deficient Wsh−/− mice showed significantly increased clinical score and ear thickening albeit having lower ear tissue levels of IL-33 and TSLP as well as lower serum levels of TSLP as compared to the WT mice. In contrast, although having significantly increased IL-33 ear tissue levels the chymase-deficient mMCP-4−/− mice showed similar clinical score, ear thickening, and TSLP levels in ear tissue and serum as the WT mice, whereas mMCP-6 and CPA3 -deficient mice showed a slightly reduced ear thickening and granulocyte infiltration. Our results suggest that MCs promote and control the level of MC903-induced AD-like inflammation.
  •  
24.
  • Xiong, Anqi, et al. (författare)
  • Heparan Sulfate in Normal and Cancer Stem Cells of the Brain
  • 2021
  • Ingår i: Biology of Extracellular Matrix. - Cham : Springer Science and Business Media Deutschland GmbH. ; , s. 205-236
  • Bokkapitel (refereegranskat)abstract
    • Proteoglycans are key molecules in signaling, both during brain development and in malignant brain tumor formation, where cancer cells mimic, or co-opt, normal developmental programs. This chapter focuses on the role of heparan sulfate proteoglycans (HSPGs) in these processes. HSPGs are composed of a core protein with attached, heavily sulfated, polysaccharide side chains, and they are ubiquitously present on cell surfaces and in the extracellular space where they serve both as structural components and regulators of a multitude of cellular activities. HSPGs are critically involved in mammalian development, and perturbations of pathways regulated by HSPGs play major roles in human diseases. Neural stem cell programs sustain populations of stem cells that initially give rise to neural progenitors with high proliferative capacity that eventually differentiate to mature cells of the nervous system. HSPGs act as coreceptors for a wide variety of signaling pathways during these processes. Accumulated mutations in neural stem cells can cause failure to perform terminal differentiation or the inability to restrict progenitor proliferation and lead to brain tumor development. The same signaling mechanisms that promote self-renewal of neural stem cells thus also support cancer stem cells, and HSPGs are integral facilitators of brain tumor development and progression.
  •  
25.
  • Xiong, Anqi, 1986-, et al. (författare)
  • Nuclear Receptor Binding Protein 2 Is Downregulated in Medulloblastoma, and Reduces Tumor Cell Survival upon Overexpression
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Pseudokinases, comprising 10% of the human kinome, are emerging as regulators of canonical kinases and their functions are starting to be defined. We previously identified the pseudokinase Nuclear Receptor Binding Protein 2 (NRBP2) in a screen for genes regulated during neural differentiation. During mouse brain development,NRBP2is expressed in the cerebellum, and in the adult brain, mainly confined to specific neuronal populations. To study the role of NRBP2 in brain tumors, we stained a brain tumor tissue array for NRPB2, and find its expression to be low, or absent, in a majority of the tumors. This includes medulloblastoma (MB), a pediatric tumor of the cerebellum. Using database mining of published MB data sets, we also find that NRBP2 is expressed at a lower level in MB than in the normal cerebellum. Recent studies indicate that MB exhibits frequent epigenetic alternations and we therefore treated MB cell lines with drugs inhibiting DNA methylation or histone deacetylation, which leads to an upregulation of NRBP2 mRNA expression, showing that it is under epigenetic regulation in cultured MB cells. Furthermore, forced overexpression of NRBP2 in MB cell lines causes a dramatic decrease in cell numbers, increased cell death, impaired cell migration and inhibited cell invasion in vitro. Taken together, our data indicate that downregulation of NRBP2 may be a feature by which MB cells escape growth regulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25
Typ av publikation
tidskriftsartikel (15)
annan publikation (6)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Åbrink, Magnus (10)
Pontén, Fredrik (3)
Lindblad-Toh, Kersti ... (3)
Ringvall, Maria (3)
Kjellén, Lena (3)
Hellman, Lars (3)
visa fler...
Westermark, Bengt (2)
Romieu, Isabelle (1)
Nilsson, Mats (1)
Kozyrev, Sergey V. (1)
Tenje, Maria (1)
Petzold, Max, 1973 (1)
Spillmann, Dorothe (1)
Bergqvist, Michael (1)
Larsson, Erik (1)
Alafuzoff, Irina (1)
Chatterjee, Subhrang ... (1)
Brunekreef, Bert (1)
Sapkota, Amir (1)
Szatkiewicz, Jin (1)
Swartling, Fredrik J ... (1)
Farzadfar, Farshad (1)
Jonas, Jost B. (1)
Khang, Young-Ho (1)
Lopez, Alan D. (1)
Lozano, Rafael (1)
Malekzadeh, Reza (1)
Micha, Renata (1)
Mozaffarian, Dariush (1)
Naghavi, Mohsen (1)
Vos, Theo (1)
Murray, Christopher ... (1)
Lim, Stephen S. (1)
Mensah, George A. (1)
Salomon, Joshua A. (1)
Gakidou, Emmanuela (1)
Lee, David M. (1)
Barbe, Laurent (1)
Hesselager, Göran (1)
Woolf, Anthony D (1)
Giovannucci, Edward (1)
Thorpe, Michael (1)
Pettersson, Mats (1)
Fu, Zhirong (1)
Olsson, Anna-Karin (1)
Libard, Sylwia (1)
Room, Robin (1)
Wallerman, Ola (1)
Gmel, Gerhard (1)
Nelander, Sven (1)
visa färre...
Lärosäte
Uppsala universitet (20)
Sveriges Lantbruksuniversitet (9)
Göteborgs universitet (2)
Umeå universitet (2)
Kungliga Tekniska Högskolan (2)
Karolinska Institutet (2)
visa fler...
Nordiska Afrikainstitutet (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (18)
Naturvetenskap (5)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy