SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rub ) "

Sökning: WFRF:(Rub )

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, N., et al. (författare)
  • Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel : A review
  • 2022
  • Ingår i: JOURNAL OF MANUFACTURING PROCESSES. - : Elsevier BV. - 1526-6125. ; 75, s. 415-434
  • Forskningsöversikt (refereegranskat)abstract
    • Stainless steel 316L has been an extensively investigated metallic material for laser powder bed fusion (L-PBF) in the past few decades due to its high corrosion resistance. However, there are challenges related to producing LPBF parts with minimal defects, attaining mechanical properties comparable with traditional process and dependency on time consuming post process treatments. The selection of L-PBF process parameters is crucial to overcome these challenges. This paper reviews the research carried out on L-PBF process parameter optimization for fabrication of 316L steel components for maximizing part densifications and attaining desired microstructure morphologies in parts. A brief work on numerical simulation approach for process parameter optimization for high densifications is also included in this paper.
  •  
2.
  • Alawwa, Fares, et al. (författare)
  • Modeling, testing, and optimization of novel lattice structures for enhanced mechanical performance
  • 2023
  • Ingår i: Mechanics of Advanced Materials and Structures. - : Informa UK Limited. - 1537-6494 .- 1537-6532. ; , s. 1-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular materials have drawn increasing interest in numerous applications due to their promising specific stiffness, strength and energy absorption capacity. In this work, a variety of rather novel lattice topologies pertinent to additive manufacturing are derived and examined. A number of these are derived by free-domain and constrained domain topology optimization procedures, while others are inspired by the triply periodic minimum surface (TPMS) sheet-based topologies. The topology optimization module utilized a single objective function of minimizing strain energy under linear elastic conditions. A total of fifteen different lattice topologies are investigated numerically, including both novel and conventional topologies (e.g. strut-based lattices) and their effective elastic properties are determined with respect to relative density through finite element analysis (FEA). Based on the preliminary FEA results, a number of these topologies are selected of which tessellated lattice structures are fabricated through laser powder bed fusion (LPBF) additive manufacturing technique out of Nylon thermoplastic material. The tessellated lattice structures are experimentally tested in compression and their mechanical performance, including uniaxial modulus, yield strength, and energy absorption capacity (EAC), is assessed. FEA simulations have been conducted using an elastic-plastic constitutive model for the Nylon base material. Both the experimental and numerical results reveal that the mechanical performance of the novel tube-based TPMS lattice P-100 and the combined loading (CL) topology derived through free-domain topology optimization surpasses all other topologies. P-100 uses a primitive TPMS with equal-length tubular connections in each direction, where the tubular length percentage compared to the primitive lattice size is 100%, while CL lattice topology is a free domain topology optimized under compressive loads on the centers of faces, edges, and vertices toward the center. The innovative lattice topologies proposed in the current study, particularly the P-100 and CL topologies, can become crucial in applications where it is necessary to improve the energy absorption capacity, such as sandwich panel cores, supports, and infills for 3D printed components.
  •  
3.
  • Almesmari, Abdulla, et al. (författare)
  • Review of Additively Manufactured Polymeric Metamaterials : Design, Fabrication, Testing and Modeling
  • 2023
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 15:19
  • Forskningsöversikt (refereegranskat)abstract
    • Metamaterials are architected cellular materials, also known as lattice materials, that are inspired by nature or human engineering intuition, and provide multifunctional attributes that cannot be achieved by conventional polymeric materials and composites. There has been an increasing interest in the design, fabrication, and testing of polymeric metamaterials due to the recent advances in digital design methods, additive manufacturing techniques, and machine learning algorithms. To this end, the present review assembles a collection of recent research on the design, fabrication and testing of polymeric metamaterials, and it can act as a reference for future engineering applications as it categorizes the mechanical properties of existing polymeric metamaterials from literature. The research within this study reveals there is a need to develop more expedient and straightforward methods for designing metamaterials, similar to the implicitly created TPMS lattices. Additionally, more research on polymeric metamaterials under more complex loading scenarios is required to better understand their behavior. Using the right machine learning algorithms in the additive manufacturing process of metamaterials can alleviate many of the current difficulties, enabling more precise and effective production with product quality.
  •  
4.
  • Almesmari, Abdulla, et al. (författare)
  • Topology optimised novel lattice structures for enhanced energy absorption and impact resistance
  • 2024
  • Ingår i: Virtual and Physical Prototyping. - : Informa UK Limited. - 1745-2759 .- 1745-2767. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study evaluates topologically optimized lattice structures for high strain rate loading, crucial for impact resistance. Using the BESO (Bidirectional Evolution Structural Optimisation) topology optimisation algorithm, CompIED and ShRIED topologies are developed for enhanced energy absorption and impact resistance. Micromechanical simulations reveal CompIED surpasses theoretical elasticity limits for isotropic cellular materials, while the hybrid design ShRComp achieves theoretical maximum across all relative densities. Compared to TPMS, truss, and plate lattices, the proposed structures exhibit higher uniaxial modulus. Manufactured via fused deposition modeling with ABS thermoplastic, their energy absorption capabilities are assessed through compression tests and impact simulations. The ShRComp lattice demonstrates superior energy absorption under compression compared to CompIED. Impact analyses of CompIED and ShRComp sandwich structures at varying velocities show exceptional resistance to perforation and higher impact absorption efficiency, outperforming other classes of sandwich structures at similar densities. These findings position these new and novel topologies as promising candidates for impact absorption applications.
  •  
5.
  • Altamimi, S., et al. (författare)
  • On Stiffness, Strength, Anisotropy, and Buckling of 30 Strut-Based Lattices with Cubic Crystal Structures
  • 2022
  • Ingår i: Advanced Engineering Materials. - : Wiley. - 1438-1656 .- 1527-2648. ; 24:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Architected cellular structures are increasingly receiving attention in numerous applications due to advances in additive manufacturing and their promising multi-functional properties. Herein, 30 architected strut-based lattices of cubic crystal symmetry are developed and their stiffness and strength are investigated computationally and experimentally. Finite element simulations are conducted to compute the effective stiffness, yield strength, and buckling strength under uniaxial, shear, and hydrostatic loadings. Also, elastic anisotropy is assessed and bifurcation analysis is performed to estimate the threshold relative density for each lattice. Selected lattices of various relative densities are 3D printed from a polymeric material using selective laser sintering (SLS). The numerical results show that the modes of deformation whether stretching-dominated, bending-dominated, or mixed differ for the various loading conditions. It is observed that by combining different lattice structures in a hybrid approach, a decrease in the anisotropic behavior is obtained, and an overall enhancement of the mechanical properties is achieved. The numerical results show rather good agreement with the experimental findings. The current study can be crucial for using the investigated lattices for enhancing the multi-functional properties of structural systems.
  •  
6.
  • Altamimi, Sumaya, et al. (författare)
  • Stiffness, strength, anisotropy, and buckling of lattices derived from TPMS and Platonic and Archimedean solids
  • 2024
  • Ingår i: Mechanics of Advanced Materials and Structures. - : Informa UK Limited. - 1537-6494 .- 1537-6532. ; , s. 1-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Lattice metamaterials have gained considerable attention due to their distinctive topological structures and multifunctional properties. In this work, the effect of topology, loading conditions, and relative density on the effective mechanical properties of various novel lattice architectures is investigated numerically and experimentally. Thirteen strut-based lattices derived from triply periodic minimal surfaces (five lattices) as well as Platonic (three lattices) and Archimedean (five lattices) solids are considered for the first time, and their anisotropic mechanical properties, including uniaxial, shear, and bulk moduli and strengths as well as their total stiffness, buckling strengths, Poisson's ratio, and anisotropy are investigated as a function of a wide range of relative densities (0.1% to 37%). Finite element analysis is employed to capture the full effective behavior of these lattices using periodic boundary conditions. Bifurcation analysis is performed to predict the threshold relative density governing their buckling vs yielding deformation behavior. Selected lattice structures of various relative densities are 3D printed using polymer selective laser sintering additive manufacturing technique and tested under quasi-static uniaxial compression where the experimental and numerical results are compared. The numerical results indicate that the deformation behavior can be altered between stretching and bending dominated mode of deformation as function of loading. Archimedean lattices are shown to outperform a wide range of strut-based lattices. This work opens the doors for more investigations of the multifunctional properties of these novel types of lattices and their engineering applications. Furthermore, the generated comprehensive data are useful in optimizing latticed structures using topology optimization techniques.
  •  
7.
  • Baghous, Nareg, et al. (författare)
  • Generalized yield surface for sheet-based triply periodic minimal surface lattices
  • 2023
  • Ingår i: International Journal of Mechanical Sciences. - : Elsevier BV. - 0020-7403 .- 1879-2162. ; 252, s. 108370-
  • Tidskriftsartikel (refereegranskat)abstract
    • Triply periodic minimal surfaces (TPMS), which are a class of architected cellular materials, have attracted significant attention lately, due to their prevailing mechanical, electrical and chemical properties, to name a few, and due to the advancements in additive manufacturing technologies that make it possible to print such mate-rials. However, simulating the elastic-plastic mechanical behavior of structural systems (e.g., beams, plates, cores of sandwich panels, structural systems with various levels of geometric complexity) that are latticed with thousands of TPMS lattices are computationally expensive to model explicitly, and hence the need to develop accurate yield surfaces in order to capture their plastic behavior in a homogenized approach. In this work, a generalized initial yield criterion is proposed for sheet-based TPMS lattices, which incorporates the Lode parameter L. The initial yielding of five different sheet-based TPMS lattices are investigated in five different loading conditions. These lattices are Schoen's I-WP (IWP-s), Gyroid (GYR-s), Diamond (DIA-s), F-RD (FRD-s) and Primitive (PRIM-s). The proposed yield criterion accurately predicts the initial yielding of all these lattices in all the loading conditions considered, outperforming other yield criteria currently proposed in literature.
  •  
8.
  • Baghous, Nareg, et al. (författare)
  • The effect of Lode parameter on the yield surface of Schoen's IWP triply periodic minimal surface lattice
  • 2022
  • Ingår i: Mechanics of materials. - : Elsevier BV. - 0167-6636 .- 1872-7743. ; 175, s. 104473-
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to the advancements in additive manufacturing and increased applications of additively manufactured structures, it is essential to fully understand both the elastic and plastic behavior of cellular materials, which include the mathematically-driven sheet lattices based on triply periodic minimal surface (TPMS) that have received significant attention recently. The compressive elastic and plastic behaviors have been well established for many TPMS latticed structures, but not under multiaxial loading. Furthermore, TPMS lattices are compu-tationally expensive to model explicitly when used in latticing various structures for enhanced multi -functionality, and hence the need to develop accurate yield surfaces in order to capture their plastic behavior in a homogenized approach. The majority of previous yield surfaces developed for cellular materials originate from cellular foams, and limited attempts has been made to develop yield surfaces for TPMS lattices. In this study, a numerical modeling framework is proposed for developing the initial yield surface for cellular materials and is used to develop the initial yield surface for Schoen's IWP sheet-based TPMS cellular lattices. The effect of different loading conditions on the effective yield strength of the IWP sheet-based (IWP-s) TPMS lattice is numerically investigated, based on a single unit cell of IWP-s under fully periodic boundary conditions, assuming an elastic-perfectly plastic behavior of the base material, for relative densities (rho) ranging from 7% to 28%. In order to account for different loading conditions, the stress state is characterized in a generalized fashion through the Lode parameter (L). The effect of L is studied over a range of mean stress values (sigma m) to understand the effect of both L and sigma m on the effective yield strength. An initial yield surface is developed incorporating the effect of L, sigma m and rho, and is validated numerically showing rather good agreement. In the 3D principal stress space, the shape of the yield surface for the IWP-s lattice resembles the shape of a cocoa pod.
  •  
9.
  •  
10.
  • Dunin-Keplicz, Barbara, et al. (författare)
  • Doxastic Group Reasoning via Multiple Belief Shadowing
  • 2019
  • Ingår i: PRIMA 2019: Principles and Practice of Multi-Agent Systems. - Cham : Springer. - 9783030337926 - 9783030337919 ; , s. 271-288
  • Konferensbidrag (refereegranskat)
  •  
11.
  • Ejeh, Chukwugozie J., et al. (författare)
  • Flexural properties of functionally graded additively manufactured AlSi10Mg TPMS latticed-beams
  • 2022
  • Ingår i: International Journal of Mechanical Sciences. - : Elsevier BV. - 0020-7403 .- 1879-2162. ; 223, s. 107293-
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the recent boom in digital design for additive manufacturing and 3D printing, there has been a significantly growing interest in latticed structures for light design and improved mechanical properties. However, the focus in the literature has mostly been on compressive mechanical properties of uniformly latticed structures with little emphasis on flexural properties of latticed-beams that are functionally graded and hybridized with different lattice topologies. Therefore, this paper aims to explore the effect of lattice relative density gradation and hybridization on the specific flexural properties of prominent sheet-based triply periodic minimal surfaces (TPMS) cellular four-point loaded beams. First, the effective elastic properties of the cubic porous topologies are evaluated computationally to converge to certain sheet-based TPMS cellular structures capable of providing high flexural properties. Schwartz primitive (P) revealed high stiffness to shear loading, meanwhile, the F-Rhombic Dodecahedron (FRD) showed better resistance to uniaxial loading, and the Diamond (D) showed well-combined uniaxial and shear moduli. The selected four-point bend (4 PB) latticed-beams are functionally graded following a bilinear pattern and hybridized through the span of their length inspired by the shearing force and bending moment diagrams arising in the 4 PB beam, in view of the effective elastic properties of the TPMS topologies. The additively manufactured AlSi10Mg uniform, functionally-graded, and hybridized latticed-beams are tested in four-point bending and the results are compared with the finite element results. Both the experimental and numerical outcomes show good agreement within the elastic-plastic regime. From experimental results, it is found that functional grading and hybridization can considerably enhance the specific flexural modulus of sheetbased TPMS latticed-beams. Also, relative density gradation within the four-point bend specimens proved very essential in deflecting crack growth thereby retarding the final failure, meanwhile hybridization is conveyed to mitigate shear-band failure. Combination of functional gradation and hybridization on the latticed-beams resulted in a significant increase in the specific flexural stiffness. Therefore, this study provides guidelines on how to enhance the flexural properties of lightweight beams through lattice functional grading and hybridization.
  •  
12.
  • Ejeh, Chukwugozie J., et al. (författare)
  • Impact behavior of periodic, stochastic, and anisotropic minimal surface-lattice sandwich structures
  • 2024
  • Ingår i: International Journal of Mechanical Sciences. - : Elsevier Ltd. - 0020-7403 .- 1879-2162. ; 276
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advancements in 3D printing technologies have made it possible to fabricate intricate lattice architectures with high precision. These lattices can now be utilized to design lightweight sandwich structures that serve multiple functions. To enhance the impact loading performance of these structures, it is crucial to understand how the lattice's topological properties, particularly those with minimal surface attributes like periodic or stochastic Primitive and Gyroid triply periodic minimal surfaces (TPMS) and spinodal-like stochastic cellular materials, associate with the mechanical properties of sandwich structures while keeping the skin thickness fixed. Thus, this paper explores the low-velocity impact behavior of various sheet/shell-based minimal surface-latticed cores of sandwich structures with woven composite skins. The elasto-plastic-damage numerical simulations consider lattice core periodicity, randomness, and anisotropy while keeping the relative density constant. Core lattice randomness and anisotropy are designed using the Gaussian Random Field (GRF) method for spinodal-based stochastic cellular materials and stochastic TPMS. The simulation results showed that the periodic Primitive-lattice core exhibits high out-of-plane shearing strength, enabling the sandwich structure to demonstrate the highest perforation limit. GRF spinodal-based core achieved the highest peak load due to its anisotropic mechanical properties. However, the post-yielding bending of the lattice sheet limited its ability to resist perforation, and absorb and dissipated energy. Interestingly, the stochastic Gyroid TPMS topology, with its inherent densely-distributed microstructure, showed high sensitivity to loading rate, resulting in enhanced energy absorption and dissipation of the sandwich structure. These findings offer valuable insights for optimizing multifunctional sandwich structures with superior impact performance and their design for additive manufacturing.
  •  
13.
  • Khatri, C, et al. (författare)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
14.
  •  
15.
  • Kurcewicz, W, et al. (författare)
  • The nuclear structure of Fr-227
  • 1997
  • Ingår i: NUCLEAR PHYSICS A. - : ELSEVIER SCIENCE BV. - 0375-9474. ; 621:4, s. 827-852
  • Tidskriftsartikel (refereegranskat)abstract
    • The gamma-rays following the beta(-) decay of Rn-227 have been investigated by means of gamma-ray singles and gamma gamma-coincidence measurements using an array of 12 Compton-suppressed Ge detectors. The fast-timing beta gamma gamma(t) method has been us
  •  
16.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy