SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(RudaK B.) "

Sökning: WFRF:(RudaK B.)

  • Resultat 1-50 av 161
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  •  
4.
  • Abramowski, A., et al. (författare)
  • Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533, s. A110-
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-frequency peaked BL Lac object PKS 2005-489 was the target of a multi-wavelength campaign with simultaneous observations in the TeV gamma-ray (H.E.S.S.), GeV gamma-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E > 100 GeV) spectrum measured with H.E.S.S. with a peak energy between similar to 5 and 500 GeV. Compared to observations with contemporaneous coverage in the VHE and X-ray bands in 2004, the X-ray flux was similar to 50 times higher during the 2009 campaign while the TeV gamma-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.
  •  
5.
  • Abdalla, H., et al. (författare)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
6.
  • Abramowski, A., et al. (författare)
  • The 2010 very high energy gamma-RAY flare and 10 years of multi-wavelength observations of M 87
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:2, s. 151-
  • Tidskriftsartikel (refereegranskat)abstract
    • The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of tau(rise)(d) = (1.69 +/- 0.30) days and tau(decay)(d) = (0.611 +/- 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (similar to day), peak fluxes (Phi(>0.35 TeV) similar or equal to (1-3) x 10(-11) photons cm(-2) s(-1)), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken similar to 3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core (flux increased by factor similar to 2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma-ray emission from M 87 are reviewed in the light of the new data.
  •  
7.
  • Aharonian, F., et al. (författare)
  • SIMULTANEOUS OBSERVATIONS OF PKS 2155-304 WITH HESS, FERMI, RXTE, AND ATOM : SPECTRAL ENERGY DISTRIBUTIONS AND VARIABILITY IN A LOW STATE
  • 2009
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 0004-637X .- 1538-4357. ; 696:2, s. L150-L155
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of gamma-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; > 100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little (similar to 30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
  •  
8.
  • Petroff, E., et al. (författare)
  • A polarized fast radio burst at low Galactic latitude
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford Academic. - 0035-8711 .- 1365-2966. ; 469:4, s. 4465-4482
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
  •  
9.
  • Abdalla, H., et al. (författare)
  • Gamma-ray blazar spectra with HESS II mono analysis : The case of PKS2155-304 and PG1553+113
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift >= 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553 + 113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553 + 113 near their SED peaks at energies approximate to 100 GeV. Methods. Multiple observational campaigns of PKS 2155 304 and PG 1553 + 113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155 304 and PG 1553 + 113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155 304, which transits near zenith, and 110 GeV for the more northern PG 1553 + 113. The measured spectra, well fitted in both cases by a log-parabola spectral model ( with a 5.0 similar to statistical preference for non-zero curvature for PKS 2155 304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E approximate to 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155 304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
  •  
10.
  • Abramowski, A., et al. (författare)
  • A multiwavelength view of the flaring state of PKS 2155-304 in 2006
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A149-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Multiwavelength (MWL) observations of the blazar PKS 2155-304 during two weeks in July and August 2006, the period when two exceptional flares at very high energies (VHE, E greater than or similar to 100 GeV) occurred, provide a detailed picture of the evolution of its emission. The complete data set from this campaign is presented, including observations in VHE gamma-rays (H.E.S. S.), X-rays (RXTE, Chandra, Swift XRT), optical (Swift UVOT, Bronberg, Watcher, ROTSE), and in the radio band (NRT, HartRAO, ATCA). Optical and radio light curves from 2004 to 2008 are compared to the available VHE data from this period, to put the 2006 campaign into the context of the long-term evolution of the source. Aims. The data set offers a close view of the evolution of the source on different time scales and yields new insights into the properties of the emission process. The predictions of synchrotron self-Compton (SSC) scenarios are compared to the MWL data, with the aim of describing the dominant features in the data down to the hour time scale. Methods. The spectral variability in the X-ray and VHE bands is explored and correlations between the integral fluxes at different wavelengths are evaluated. SSC modelling is used to interpret the general trends of the varying spectral energy distribution. Results. The X-ray and VHE gamma-ray emission are correlated during the observed high state of the source, but show no direct connection with longer wavelengths. The long-term flux evolution in the optical and radio bands is found to be correlated and shows that the source reaches a high state at long wavelengths after the occurrence of the VHE flares. Spectral hardening is seen in the Swift XRT data. Conclusions. The nightly averaged high-energy spectra of the non-flaring nights can be reproduced by a stationary one-zone SSC model, with only small variations in the parameters. The spectral and flux evolution in the high-energy band during the night of the second VHE flare is modelled with multi-zone SSC models, which can provide relatively simple interpretations for the hour time-scale evolution of the high-energy emission, even for such a complex data set. For the first time in this type of source, a clear indication is found for a relation between high activity at high energies and a long-term increase in the low frequency fluxes.
  •  
11.
  • Abramowski, A., et al. (författare)
  • HESS J1943+213 : a candidate extreme BL Lacertae object
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 529, s. A49-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The H. E. S. S. Cherenkov telescope array has been surveying the Galactic plane for new VHE (>100 GeV) gamma-ray sources. Aims. We report on a newly detected point-like source, HESS J1943+213. This source coincides with an unidentified hard X-ray source IGR J19443+2117, which was proposed to have radio and infrared counterparts. Methods. We combine new H. E. S. S., Fermi/LAT and Nancay Radio Telescope observations with pre-existing non-simultaneous multi-wavelength observations of IGR J19443+2117 and discuss the likely source associations as well as the interpretation as an active galactic nucleus, a gamma-ray binary or a pulsar wind nebula. Results. HESS J1943+213 is detected at the significance level of 7.9 sigma (post-trials) at RA(J2000) = 19(h)43(m)55(s) +/- 1(stat)(s) +/- 1(sys)(s), Dec(J2000) = +21 degrees 18'8 '' +/- 17(stat)'' +/- 20(sys)''. The source has a soft spectrum with photon index Gamma = 3.1 +/- 0.3(stat) +/- 0.2(sys) and a flux above 470 GeV of (1.3 +/- 0.2(stat) +/- 0.3(sys)) x 10(-12) cm(-2) s(-1). There is no Fermi/LAT counterpart down to a flux limit of 6 x 10(-9) cm(-2) s(-1) in the 0.1-100 GeV energy range (95% confidence upper limit calculated for an assumed power-law model with a photon index Gamma = 2.0). The data from radio to VHE gamma-rays do not show any significant variability. Conclusions. The lack of a massive stellar counterpart disfavors the binary hypothesis, while the soft VHE spectrum would be very unusual in case of a pulsar wind nebula. In addition, the distance estimates for Galactic counterparts places them outside of the Milky Way. All available observations favor an interpretation as an extreme, high-frequency peaked BL Lac object with a redshift z > 0.14. This would be the first time a blazar is detected serendipitously from ground-based VHE observations, and the first VHE AGN detected in the Galactic Plane.
  •  
12.
  • Abramowski, A., et al. (författare)
  • Multi-wavelength observations of H 2356-309
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 516, s. A56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The properties of the broad-band emission from the high-frequency peaked BL Lac H 2356-309 (z = 0.165) are investigated. Methods. Very high energy (VHE; E > 100 GeV) observations of H 2356-309 were performed with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Simultaneous optical/UV and X-ray observations were made with the XMM-Newton satellite on June 12/13 and June 14/15, 2005. NRT radio observations were also contemporaneously performed in 2005. ATOM optical monitoring observations were also made in 2007. Results. A strong VHE signal, similar to 13 sigma total, was detected by HESS after the four years HESS observations (116.8 h live time). The integral flux above 240 GeV is I(> 240 GeV) = (3.06 +/- 0.26(stat) +/- 0.61(syst)) x 10(-12) cm(-2) s(-1), corresponding to similar to 1.6% of the flux observed from the Crab Nebula. A time-averaged energy spectrum is measured from 200 GeV to 2 TeV and is characterized by a power law (photon index of Gamma = 3.06 +/- 0.15(stat) +/- 0.10(syst)). Significant small-amplitude variations in the VHE flux from H 2356-309 are seen on time scales of months and years, but not on shorter time scales. No evidence for any variations in the VHE spectral slope are found within these data. The XMM-Newton X-ray measurements show a historically low X-ray state, characterized by a hard, broken-power-law spectrum on both nights. Conclusions. The broad-band spectral energy distribution (SED) of the blazar can be adequately fit using a simple one-zone synchrotron self-Compton (SSC) model. In the SSC scenario, higher VHE fluxes could be expected in the future since the observed X-ray flux is at a historically low level.
  •  
13.
  • Abramowski, A., et al. (författare)
  • VHE gamma-ray emission of PKS 2155-304 : spectral and temporal variability
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 520, s. A83-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Observations of very high-energy.-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects lead to a better understanding of the mechanisms in play. Aims. To investigate the spectral and temporal variability of VHE (>100 GeV) gamma-rays of the well-known high-frequency-peaked BL Lac object PKS 2155-304 with the HESS imaging atmospheric Cherenkov telescopes over a wide range of flux states. Methods. Data collected from 2005 to 2007 were analyzed. Spectra were derived on time scales ranging from 3 years to 4 min. Light curve variability was studied through doubling timescales and structure functions and compared with red noise process simulations. Results. The source was found to be in a low state from 2005 to 2007, except for a set of exceptional flares that occurred in July 2006. The quiescent state of the source is characterized by an associated mean flux level of (4.32 +/- 0.09(stat) +/- 0.86(syst)) x 10(-11) cm(-2) s(-1) above 200 GeV, or approximately 15% of the Crab Nebula, and a power-law photon index of Gamma = 3.53 +/- 0.06(stat) +/- 0.10(syst). During the flares of July 2006, doubling timescales of similar to 2 min are found. The spectral index variation is examined over two orders of magnitude in flux, yielding different behavior at low and high fluxes, which is a new phenomenon in VHE gamma-ray emitting blazars. The variability amplitude characterized by the fractional rms F-var is strongly energy-dependent and is proportional to E-0.19 +/- 0.01. The light curve rms correlates with the flux. This is the signature of a multiplicative process that can be accounted for as a red noise with a Fourier index of similar to 2. Conclusions. This unique data set shows evidence of a low-level.-ray emission state from PKS 2155-304 that possibly has a different origin than the outbursts. The discovery of the light curve ognormal behavior might be an indicator of the origin of aperiodic variability in blazars.
  •  
14.
  • Acciari, V. A., et al. (författare)
  • Radio Imaging of the Very-High-Energy gamma-Ray Emission Region in the Central Engine of a Radio Galaxy
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5939, s. 444-448
  • Tidskriftsartikel (refereegranskat)abstract
    • The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
  •  
15.
  • Adams, C. B., et al. (författare)
  • Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H alpha emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 +/- 4.4 days is reported, consistent with the period of 317.3 +/- 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H alpha parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.
  •  
16.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
17.
  • Aliu, E., et al. (författare)
  • Long-term TeV and X-ray Observations of the Gamma-ray Binary HESS J0632+057
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 780:2
  • Tidskriftsartikel (refereegranskat)abstract
    • HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories in both thenorthern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System and High Energy Stereoscopic System Cherenkov telescopes and the X-ray satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The very-high-energy (VHE) emission is found to be variable and is correlated with that at X-ray energies. An orbital period of 315(-4)(+6) days is derived from the X-ray data set, which is compatible with previous results, P = (321 +/- 5) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-rayemission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant (> 6.5 sigma) detection at orbital phases 0.6-0.9. Theobtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.
  •  
18.
  • Abe, H., et al. (författare)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
19.
  • Abramowski, A., et al. (författare)
  • A new SNR with TeV shell-type morphology : HESS J1731-347
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531, s. A81-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The recent discovery of the radio shell-type supernova remnant (SNR), G353.6-0.7, in spatial coincidence with the unidentified TeV source HESS J1731-347 has motivated further observations of the source with the High Energy Stereoscopic System (HESS) Cherenkov telescope array to test a possible association of the gamma-ray emission with the SNR. Methods. With a total of 59 h of observation, representing about four times the initial exposure available in the discovery paper of HESS J1731-347, the gamma-ray morphology is investigated and compared with the radio morphology. An estimate of the distance is derived by comparing the interstellar absorption derived from X-rays and the one obtained from (12)CO and HI observations. Results. The deeper gamma-ray observation of the source has revealed a large shell-type structure with similar position and extension (r similar to 0.25 degrees) as the radio SNR, thus confirming their association. By accounting for the HESS angular resolution and projection effects within a simple shell model, the radial profile is compatible with a thin, spatially unresolved, rim. Together with RX J1713.7-3946, RX J0852.0-4622 and SN 1006, HESS J1731-347 is now the fourth SNR with a significant shell morphology at TeV energies. The derived lower limit on the distance of the SNR of 3.2 kpc is used together with radio and X-ray data to discuss the possible origin of the gamma-ray emission, either via inverse Compton scattering of electrons or the decay of neutral pions resulting from proton-proton interaction.
  •  
20.
  • Abramowski, A., et al. (författare)
  • Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. A103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In some galaxy clusters, powerful active galactic nuclei (AGN) have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Aims. Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Methods. Data obtained in 20.2 h of dedicated H. E. S. S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. Results. No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. Conclusions. The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, which involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons, which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 mu G in the inner lobes.
  •  
21.
  • Abramowski, A., et al. (författare)
  • Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy gamma-ray emission. Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1 keV X-ray band, the 2-5 keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results. We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5 keV X-ray data reveals a correlation with the 0.4-50 TeV gamma-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at E-cut = (3.5 +/- 1.2(stat)) TeV and a spectral index of Gamma approximate to 1.6 +/- 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to similar to 0.1% of the initial kinetic energy of a Type Ia supernova explosion (10(51) erg). When using a hadronic model, a magnetic field of B approximate to 100 mu G is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E-2 spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Gamma(p) approximate to 1.7 would be required, which implies that similar to 7 x 10(49)/n(cm-3) erg has been transferred into high-energy protons with the effective density n(cm-3) = n/1 cm(-3). This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm(-3).
  •  
22.
  • Abramowski, A., et al. (författare)
  • Detection of very-high-energy gamma-ray emission from the vicinity of PSR B1706-44 and G 343.1-2.3 with HESS
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528, s. A143-
  • Tidskriftsartikel (refereegranskat)abstract
    • The gamma-ray pulsar PSR B1706-44 and the adjacent supernova remnant (SNR) candidate G 343.1-2.3 were observed by H. E. S. S. during a dedicated observation campaign in 2007. As a result of this observation campaign, a new source of very-high-energy (VHE; E > 100 GeV) gamma-ray emission, H.E.S.S. J1708-443, was detected with a statistical significance of 7 sigma, although no significant point-like emission was detected at the position of the energetic pulsar itself. In this paper, the morphological and spectral analyses of the newly-discovered TeV source are presented. The centroid of H. E. S. S. J1708-443 is considerably offset from the pulsar and located near the apparent center of the SNR, at alpha(J2000) = 17(h)08(m)11(s) +/- 17(s) and delta(J2000) = -44 degrees 20' +/- 4'. The source is found to be significantly more extended than the H. E. S. S. point spread function (similar to 0.1 degrees), with an intrinsic Gaussian width of 0.29 degrees +/- 0.04 degrees. Its integral flux between 1 and 10 TeV is similar to 3.8 x 10(-1)2 ph cm(-2) s(-1), equivalent to 17% of the Crab Nebula flux in the same energy range. The measured energy spectrum is well-fit by a power law with a relatively hard photon index Gamma = 2.0 +/- 0.1(stat) +/-0.2(sys). Additional multi-wavelength data, including 330 MHz VLA observations, were used to investigate the VHE gamma-ray source's possible associations with the pulsar wind nebula of PSR B1706-44 and/or with the complex radio structure of the partial shell-type SNR G 343.1-2.3.
  •  
23.
  • Abramowski, A., et al. (författare)
  • Discovery of extended VHE gamma-ray emission from the vicinity of the young massive stellar cluster Westerlund 1
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. A114-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Results obtained in very-high-energy (VHE; E >= 100 GeV) gamma-ray observations performed with the H.E.S.S. telescope array are used to investigate particle acceleration processes in the vicinity of the young massive stellar cluster Westerlund 1 (Wd 1). Methods. Imaging of Cherenkov light from gamma-ray induced particle cascades in the Earth's atmosphere is used to search for VHE gamma rays from the region around Wd 1. Possible catalogued counterparts are searched for and discussed in terms of morphology and energetics of the H.E.S.S. source. Results. The detection of the degree-scale extended VHE gamma-ray source HESS J1646-458 is reported based on 45 h of H.E.S.S. observations performed between 2004 and 2008. The VHE gamma-ray source is centred on the nominal position of Wd 1 and detected with a total statistical significance of similar to 20 sigma. The emission region clearly extends beyond the H.E.S.S. point-spread function (PSF). The differential energy spectrum follows a power law in energy with an index of Gamma = 2.19 +/- 0.08(stat) +/- 0.20(sys) and a flux normalisation at 1 TeV of Phi(0) = (9.0 +/- 1.4(stat) +/- 1.8(sys)) x 10(-12) TeV-1 cm(-2) s(-1). The integral flux above 0.2 TeV amounts to (5.2 +/- 0.9) x 10(-11) cm(-2) s(-1). Conclusions. Four objects coincident with HESS J1646-458 are discussed in the search of a counterpart, namely the magnetar CXOU J164710.2-455216, the X-ray binary 4U 1642-45, the pulsar PSR J1648-4611 and the massive stellar cluster Wd 1. In a single-source scenario, Wd 1 is favoured as site of VHE particle acceleration. Here, a hadronic parent population would be accelerated within the stellar cluster. Beside this, there is evidence for a multi-source origin, where a scenario involving PSR J1648-4611 could be viable to explain parts of the VHE gamma-ray emission of HESS J1646-458.
  •  
24.
  • Abramowski, A., et al. (författare)
  • Discovery of gamma-ray emission from the extragalactic pulsar wind nebula N 157B with HESS
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. Article ID: L2-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the significant detection of the first extragalactic pulsar wind nebula (PWN) detected in gamma rays, N 157B, located in the large Magellanic Cloud (LMC). Pulsars with high spin-down luminosity are found to power energised nebulae that emit gamma rays up to energies of several tens of TeV. N 157B is associated with PSR J0537-6910, which is the pulsar with the highest known spin-down luminosity. The High Energy Stereoscopic System telescope array observed this nebula on a yearly basis from 2004 to 2009 with a dead-time corrected exposure of 46 h. The gamma-ray spectrum between 600 GeV and 12 TeV is well-described by a pure power-law with a photon index of 2.8 +/- 0.2(stat) +/- 0.3(syst) and a normalisation at 1 TeV of (8.2 +/- 0.8(stat) +/- 2.5(syst)) x 10(-13) cm(-2) s(-1) TeV-1. A leptonic multi-wavelength model shows that an energy of about 4 x 10(49) erg is stored in electrons and positrons. The apparent efficiency, which is the ratio of the TeV gamma-ray luminosity to the pulsar's spin-down luminosity, 0.08% +/- 0.01%, is comparable to those of PWNe found in the Milky Way. The detection of a PWN at such a large distance is possible due to the pulsar's favourable spin-down luminosity and a bright infrared photon-field serving as an inverse-Compton-scattering target for accelerated leptons. By applying a calorimetric technique to these observations, the pulsar's birth period is estimated to be shorter than 10 ms.
  •  
25.
  • Abramowski, A., et al. (författare)
  • Discovery of hard-spectrum gamma- ray emission from the BL Lacertae object 1ES 0414+009
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 538, s. A103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. 1ES 0414+009 (z = 0.287) is a distant high-frequency- peaked BL Lac object, and has long been considered a likely emitter of very-highenergy (VHE, E > 100 GeV) gamma-rays due to its high X-ray and radio flux. Aims. Observations in the VHE gamma-ray band and across the electromagnetic spectrum can provide insights into the origin of highly energetic particles present in the source and the radiation processes at work. Because of the distance of the source, the gamma-ray spectrum might provide further limits on the level of the extragalactic background light (EBL). Methods. We report observations made between October 2005 and December 2009 with H. E. S. S., an array of four imaging atmospheric Cherenkov telescopes. Observations at high energies (HE, 100 MeV-100 GeV) with the Fermi-LAT instrument in the first 20 months of its operation are also reported. To complete the multi-wavelength picture, archival UV and X-ray observations with the Swift satellite and optical observations with the ATOM telescope are also used. Results. Based on the observations with H.E.S.S., 1ES 0414+009 is detected for the first time in the VHE band. An excess of 224 events is measured, corresponding to a significance of 7.8 sigma. The photon spectrum of the source is well described by a power law, with photon index of Gamma(VHE) = 3.45 +/- 0.25(stat) +/- 0.20(syst). The integral flux above 200 GeV is (1.88 +/- 0.20(stat) +/- 0.38(syst)) x10(-12) cm(-2) s(-1). Observations with the Fermi-LAT in the first 20 months of operation show a flux between 200 MeV and 100 GeV of (2.3 +/- 0.2(stat)) x 10(-9) erg cm(-2) s(-1), and a spectrum well described by a power-law function with a photon index Gamma(HE) = 1.85 +/- 0.18. Swift/XRT observations show an X-ray flux between 2 and 10 keV of (0.8-1) x 10(-11) erg cm(-2) s(-1), and a steep spectrum Gamma(X) = (2.2-2.3). Combining X-ray with optical-UV data, a fit with a log-parabolic function locates the synchrotron peak around 0.1 keV. Conclusions. Although the GeV-TeV observations do not provide better constraints on the EBL than previously obtained, they confirm a low density of the EBL, close to the lower limits from galaxy counts. The absorption-corrected HE and VHE gamma-ray spectra are both hard and have similar spectral indices (approximate to 1.86), indicating no significant change of slope between the HE and VHE gamma-ray bands, and locating the gamma-ray peak in the SED above 1-2 TeV. As for other TeV BL Lac objects with the gamma-ray peak at such high energies and a large separation between the two SED humps, this average broad-band SED represents a challenge for simple one-zone synchrotron self-Compton models, requiring a high Doppler factor and very low B-field.
  •  
26.
  • Abramowski, A., et al. (författare)
  • Discovery of TeV gamma-ray emission from PKS 0447-439 and derivation of an upper limit on its redshift
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552, s. A118-
  • Tidskriftsartikel (refereegranskat)abstract
    • Very high-energy gamma-ray emission from PKS 0447-439 was detected with the H. E. S. S. Cherenkov telescope array in December 2009. This blazar is one of the brightest extragalactic objects in the Fermi bright source list and has a hard spectrum in the MeV to GeV range. In the TeV range, a photon index of 3.89 +/- 0.37 (stat) +/- 0.22 (sys) and a flux normalisation at 1 TeV, phi(1) (TeV) = (3.5 +/- 1.1(stat) +/- 0.9(sys)) x 10(-13) cm(-2) s(-1) TeV-1 were found. The detection with H. E. S. S. triggered observations in the X-ray band with the Swift and RXTE telescopes. Simultaneous UV and optical data from Swift UVOT and data from the optical telescopes ATOM and ROTSE are also available. The spectrum and light curve measured with H. E. S. S. are presented and compared to the multi-wavelength data at lower energies. A rapid flare is seen in the Swift XRT and RXTE data, together with a flux variation in the UV band, at a time scale of the order of one day. A firm upper limit of z < 0.59 on the redshift of PKS 0447-439 is derived from the combined Fermi-LAT and H. E. S. S. data, given the assumptions that there is no upturn in the intrinsic spectrum above the Fermi-LAT energy range and that absorption on the extragalactic background light (EBL) is not weaker than the lower limit provided by current models. The spectral energy distribution is well described by a simple one-zone synchrotron self-Compton scenario, if the redshift of the source is less than z less than or similar to 0.4.
  •  
27.
  • Abramowski, A., et al. (författare)
  • Discovery of the source HESS J1356-645 associated with the young and energetic PSR J1357-6429
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533, s. A103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Several newly discovered very-high-energy (VHE; E > 100 GeV) gamma-ray sources in the Galaxy are thought to be associated with energetic pulsars. Among them, middle-aged (greater than or similar to 10(4) yr) systems exhibit large centre-filled VHE nebulae, offset from the pulsar position, which result from the complex relationship between the pulsar wind and the surrounding medium, and reflect the past evolution of the pulsar. Aims. Imaging Atmospheric Cherenkov Telescopes (IACTs) have been successful in revealing extended emission from these sources in the VHE regime. Together with radio and X-ray observations, this observational window allows one to probe the energetics and magnetic field inside these large-scale nebulae. Methods. H.E.S.S., with its large field of view, angular resolution of less than or similar to 0.1 degrees and unprecedented sensitivity, has been used to discover a large population of such VHE sources. In this paper, the H. E. S. S. data from the continuation of the Galactic Plane Survey (-80 degrees < l < 60 degrees, vertical bar b vertical bar < 3 degrees), together with the existing multi-wavelength observations, are used. Results. A new VHE gamma-ray source was discovered at RA (J2000) = 13(h)56(m)00(s), Dec (J2000) = -64 degrees 30'00 '' with a 2' statistical error in each coordinate, namely HESS J1356-645. The source is extended, with an intrinsic Gaussian width of (0.20 +/- 0.02)degrees. Its integrated energy flux between 1 and 10 TeV of 8 x 10(-12) erg cm(-2) s(-1) represents similar to 11% of the Crab Nebula flux in the same energy band. The energy spectrum between 1 and 20 TeV is well described by a power law dN/dE proportional to E-Gamma with photon index Gamma = 2.2 +/- 0.2(stat) +/- 0.2(sys). The inspection of archival radio images at three frequencies and the analysis of X-ray data from ROSAT/PSPC and XMM-Newton/MOS reveal the presence of faint non-thermal diffuse emission coincident with HESS J1356-645. Conclusions. HESS J1356-645 is most likely associated with the young and energetic pulsar PSR J1357-6429 (d = 2.4 kpc, tau(c) = 7.3 kyr and (E) over dot = 3.1 x 10(36) erg s(-1)), located at a projected distance of similar to 5 pc from the centroid of the VHE emission. HESS J1356-645 and its radio and X-ray counterparts would thus represent the nebula resulting from the past history of the PSR J1357-6429 wind. In a simple one-zone model, constraints on the magnetic field strength in the nebula are obtained from the flux of the faint and extended X-ray emission detected with ROSAT and XMM-Newton. Fermi-LAT upper limits in the high-energy ( HE; 0.1-100 GeV) domain are also used to constrain the parent electron spectrum. From the low magnetic field value inferred from this approach (similar to 3-4 mu G), HESS J1356-645 is thought to share many similarities with other known gamma-ray emitting nebulae, such as Vela X, as it exhibits a large-scale nebula seen in radio, X-rays and VHE gamma-rays.
  •  
28.
  • Abramowski, A., et al. (författare)
  • Discovery of VHE emission towards the Carina arm region with the HESS telescope array : HESSJ1018-589
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541, s. A5-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Carina arm region, containing the supernova remnant SNRG284.3-1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6-5856 and the energetic pulsar PSRJ1016-5857 and its nebula, has been observed with the H. E. S. S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1TeV) gamma-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE gamma-ray emission. The new VHE source HESS J1018-589 shows a bright, point-like emission region positionally coincident with SNRG284.3-1.8 and 1FGL J1018.6-5856 and a diffuse extension towards the direction of PSRJ1016-5857. A soft (Gamma = 2.7 +/- 0.5(stat)) photon index, with a differential flux at 1 TeV of N-0 = (4.2 +/- 1.1) x 10(-13) TeV-1 cm(-2) s(-1) is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Gamma = 2.9 +/- 0.4(stat) and differential flux at 1 TeV of N-0 = (6.8 +/- 1.6) x 10(-1)3 TeV-1 cm(-2) s(-1). This H. E. S. S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4-58564) with a photon index of Gamma = 1.65 +/- 0.08 in the center of SNRG284.3-1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n approximate to 0.5 cm(-3) (2.9 kpc/d)(2). The position of XMMUJ101855.4-58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6-5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE gamma-ray emission from HESS J1018-589 and the various potential counterparts in the Carina arm region.
  •  
29.
  • Abramowski, A., et al. (författare)
  • Discovery of VHE gamma-ray emission and multi-wavelength observations of the BL Lacertae object 1RXSJ101015.9-311909
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 542, s. A94-
  • Tidskriftsartikel (refereegranskat)abstract
    • 1RXS J101015.9-311909 is a galaxy located at a redshift of z = 0.14 hosting an active nucleus (called AGN) belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the origin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006 and 2010 with the H. E. S. S. instrument, an array of four imaging atmospheric Cherenkov telescopes. H. E. S. S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9-311909 is detected with H. E. S. S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1 standard deviations. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of Gamma = 3.08 +/- 0.42(stat) +/- 0.20(sys). The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variability over the time reported. In addition, public Fermi/LAT data are analysed to search for high energy emission from the source. The Fermi/LAT HE emission in the 100 MeV to 200 GeV energy range is significant at 8.3 standard deviations in the chosen 25-month dataset. UV and X-ray contemporaneous observations with the Swift satellite in May 2007 are also reported, together with optical observations performed with the atom telescope located at the H. E. S. S. site. Swift observations reveal an absorbed X-ray flux of F(0.3-7) keV = 1.04(-0.05)(+0.04) x 10(-11) erg cm(-2) s(-1) in the 0.3-7 keV range. Finally, all the available data are used to study the multi-wavelength properties of the source. The spectral energy distribution (SED) can be reproduced using a simple one-zone Synchrotron Self Compton (SSC) model with emission from a region with a Doppler factor of 30 and a magnetic field between 0.025 and 0.16 G. These parameters are similar to those obtained for other sources of this type.
  •  
30.
  • Abramowski, A., et al. (författare)
  • HESS constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:8, s. 608-616
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sculptor and Carina dwarf spheroidal galaxies were observed with the H.E.S.S. Cherenkov telescope array between January 2008 and December 2009. The data sets consist of a total of 11.8 h and 14.811 of high quality data, respectively. No gamma-ray signal was detected at the nominal positions of these galaxies above 220 GeV and 320 GeV, respectively. Upper limits on the gamma-ray fluxes at 95% CL assuming two forms for the spectral energy distribution (a power law shape and one derived from dark matter annihilation) are obtained at the level of 10(-13)-10(-12) cm(-2) s(-1) in the TeV range. Constraints on the velocity weighted dark matter particle annihilation cross section for both Sculptor and Carina dwarf galaxies range from 10(-21) cm(3) s(-1) down to similar to 10(-2)2 cm(3) s(-1) on the dark matter halo model used. Possible enhancements of the gamma-ray flux are studied: the Sommerfeld effect, which is found to exclude some dark matter particle masses, the internal Bremsstrahlung and clumps in the dark-matter halo distributions. (C) 2010 Elsevier B.V. All rights reserved.
  •  
31.
  • Abramowski, A., et al. (författare)
  • HESS discovery of VHE gamma-rays from the quasar PKS 1510-089
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 554, s. A107-
  • Tidskriftsartikel (refereegranskat)abstract
    • The quasar PKS 1510-089 (z = 0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E >= 0.1 TeV) emission. VHE gamma-rays were detected with a statistical significance of 9.2 standard deviations in 15.8 h of H. E. S. S. data taken during March and April 2009. A VHE integral flux of I(0.15 TeV < E < 1.0TeV) = (1.0 +/- 0.2(stat) +/- 0.2(sys)) x 10(-11) cm(-2) s(-1) is measured. The best-fit power law to the VHE data has a photon index of G = 5.4 +/- 0.7(stat) +/- 0.3(sys). The GeV and optical light curves show pronounced variability during the period of H.E.S.S. observations. However, there is insufficient evidence to claim statistically significant variability in the VHE data. Because of its relatively high redshift, the VHE flux from PKS 1510-089 should suffer considerable attenuation in the intergalactic space due to the extragalactic background light (EBL). Hence, the measured gamma-ray spectrum is used to derive upper limits on the opacity due to EBL, which are found to be comparable with the previously derived limits from relatively-nearby BL Lac objects. Unlike typical VHE-detected blazars where the broadband spectrum is dominated by nonthermal radiation at all wavelengths, the quasar PKS 1510-089 has a bright thermal component in the optical to UV frequency band. Among all VHE detected blazars, PKS 1510-089 has the most luminous broad line region. The detection of VHE emission from this quasar indicates a low level of gamma - gamma absorption on the internal optical to UV photon field.
  •  
32.
  • Abramowski, A., et al. (författare)
  • HESS observations of the Carina nebula and its enigmatic colliding wind binary Eta Carinae
  • 2012
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 424:1, s. 128-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The massive binary system Eta Carinae and the surrounding H ii complex, the Carina nebula, are potential particle acceleration sites from which very high energy (VHE; E= 100 GeV) ?-ray emission could be expected. This paper presents data collected during VHE ?-ray observations with the HESS telescope array from 2004 to 2010, which cover a full orbit of Eta Carinae. In the 33.1-h data set no hint of significant ?-ray emission from Eta Carinae has been found and an upper limit on the ?-ray flux of (99 per cent confidence level) is derived above the energy threshold of 470 GeV. Together with the detection of high energy (HE; 0.1 =E= 100 GeV) ?-ray emission by the Fermi Large Area Telescope up to 100 GeV, and assuming a continuation of the average HE spectral index into the VHE domain, these results imply a cut-off in the ?-ray spectrum between the HE and VHE ?-ray range. This could be caused either by a cut-off in the accelerated particle distribution or by severe ?? absorption losses in the wind collision region. Furthermore, the search for extended ?-ray emission from the Carina nebula resulted in an upper limit on the ?-ray flux of (99 per cent confidence level). The derived upper limit of 23 on the cosmic ray enhancement factor is compared with results found for the old-age mixed-morphology supernova remnant W28.
  •  
33.
  • Abramowski, A., et al. (författare)
  • HESS OBSERVATIONS OF THE GLOBULAR CLUSTERS NGC 6388 AND M15 AND SEARCH FOR A DARK MATTER SIGNAL
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 735:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of the globular clusters (GCs) NGC 6388 and M15 were carried out by the High Energy Stereoscopic System array of Cherenkov telescopes for a live time of 27.2 and 15.2 hr, respectively. No gamma-ray signal is found at the nominal target position of NGC 6388 and M15. In the primordial formation scenario, GCs are formed in a dark matter (DM) halo and DM could still be present in the baryon-dominated environment of GCs. This opens the possibility of observing a DM self-annihilation signal. The DM content of the GCs NGC 6388 and M15 is modeled taking into account the astrophysical processes that can be expected to influence the DM distribution during the evolution of the GC: the adiabatic contraction of DM by baryons, the adiabatic growth of a black hole in the DM halo, and the kinetic heating of DM by stars. Ninety-five percent confidence level exclusion limits on the DM particle velocity-weighted annihilation cross section are derived for these DM halos. In the TeV range, the limits on the velocity-weighted annihilation cross section are derived at the 10(-25) cm(3) s(-1) level and a few 10(-24) cm(3) s(-1) for NGC 6388 and M15, respectively.
  •  
34.
  • Abramowski, A., et al. (författare)
  • Identification of HESS J1303-631 as a pulsar wind nebula through gamma-ray, X-ray, and radio observations
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 548, s. A46-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The previously unidentified very high-energy (VHE; E > 100 GeV) gamma-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H. E. S. S. Cherenkov telescope array in order to identify this object. Archival data from the XMM-Newton X-ray satellite and from the PMN radio survey are also examined. Methods. Detailed morphological and spectral studies of VHE gamma-ray emission as well as of the XMM-Newton X-ray data are performed. Radio data from the PMN survey are used as well to construct a leptonic model of the source. The gamma-ray and X-ray spectra and radio upper limit are used to construct a one zone leptonic model of the spectral energy distribution (SED). Results. Significant energy-dependent morphology of the gamma-ray source is detected with high-energy emission (E > 10 TeV) positionally coincident with the pulsar PSR J1301-6305 and lower energy emission (E < 2 TeV) extending similar to 0.4 degrees to the southeast of the pulsar. The spectrum of the VHE source can be described with a power-law with an exponential cut-off N-0 = (5.6 +/- 0.5) x 10(-12) TeV-1 cm(-2) s(-1), Gamma = 1.5 +/- 0.2) and E-cut = (7.7 +/- 2.2) TeV. The pulsar wind nebula (PWN) is also detected in X-rays, extending similar to 2-3' from the pulsar position towards the center of the gamma-ray emission region. A potential radio counterpart from the PMN survey is also discussed, showing a hint for a counterpart at the edge of the X-ray PWN trail and is taken as an upper limit in the SED. The extended X-ray PWN has an unabsorbed flux of F2-10 (keV) similar to 1.6(-0.4)(+0.2) x 10(-13) erg cm(-2)s(-1) and is detected at a significance of 6.5 sigma. The SED is well described by a one zone leptonic scenario which, with its associated caveats, predicts a very low average magnetic field for this source. Conclusions. Significant energy-dependent morphology of this source, as well as the identification of an associated X-ray PWN from XMM-Newton observations enable identification of the VHE source as an evolved PWN associated to the pulsar PSR J1301-6305. This identification is supported by the one zone leptonic model, which suggests that the energetics of the gamma-ray and X-ray radiation are such that they may have a similar origin in the pulsar nebula. However, the large discrepancy in emission region sizes and the low level of synchrotron radiation suggest a multi-population leptonic nature. The low implied magnetic field suggests that the PWN has undergone significant expansion. This would explain the low level of synchrotron radiation and the difficulty in detecting counterparts at lower energies, the reason this source was originally classified as a "dark" VHE gamma-ray source.
  •  
35.
  • Abramowski, A., et al. (författare)
  • Revisiting the Westerlund 2 field with the HESS telescope array
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 525, s. A46-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Previous observations with the HESS telescope array revealed the existence of extended very-high-energy (VHE; E > 100 GeV) gamma-ray emission, HESS J1023-575, coincident with the young stellar cluster Westerlund 2. At the time of discovery, the origin of the observed emission was not unambiguously identified, and follow-up observations have been performed to further investigate the nature of this gamma-ray source. Methods. The Carina region towards the open cluster Westerlund 2 has been re-observed, increasing the total exposure to 45.9 h. The combined dataset includes 33 h of new data and now permits a search for energy-dependent morphology and detailed spectroscopy. Results. A new, hard spectrum VHE gamma-ray source, HESS J1026-582, was discovered with a statistical significance of 7 sigma. It is positionally coincident with the Fermi LAT pulsar PSRJ1028-5819. The positional coincidence and radio/gamma-ray characteristics of the LAT pulsar favors a scenario where the TeV emission originates from a pulsar wind nebula. The nature of HESS J1023-575 is discussed in light of the deep HESS observations and recent multi-wavelength discoveries, including the Fermi LAT pulsar PSRJ1022-5746 and giant molecular clouds in the region. Despite the improved VHE dataset, a clear identification of the object responsible for the VHE emission from HESS J1023-575 is not yet possible, and contribution from the nearby high-energy pulsar and/or the open cluster remains a possibility.
  •  
36.
  • Abramowski, A., et al. (författare)
  • Search for a Dark Matter Annihilation Signal from the Galactic Center Halo with HESS
  • 2011
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:16, s. 161301-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r similar to 45-150 pc from the Galactic center. The background-subtracted gamma-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) gamma-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual gamma-ray flux. Assuming conventional Navarro-Frenk-White and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section as a function of the DM particle mass. These are among the best reported so far for this energy range and in particular differ only little between the chosen density profile parametrizations. In particular, for the DM particle mass of similar to 1 TeV, values for above 3 x 10(-25) cm(3) s(-1) are excluded for the Einasto density profile.
  •  
37.
  • Abramowski, A., et al. (författare)
  • Search for dark matter annihilation signals from the Fornax galaxy cluster with H.E.S.S.
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 750:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fornax galaxy cluster was observed with the High Energy Stereoscopic System for a total live time of 14.5 hr, searching for very high energy (VHE; E > 100GeV) gamma-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation gamma-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional gamma-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of (95% C.L.) similar to 10(-23) cm(3) s(-1), depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of (95% C.L.) similar to 10(-26) cm(3) s(-1).
  •  
38.
  • Abramowski, A., et al. (författare)
  • Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:9, s. 738-747
  • Tidskriftsartikel (refereegranskat)abstract
    • Several models of Quantum Gravity predict Lorentz Symmetry breaking at energy scales approaching the Planck scale (similar to 10(19) GeV). With present photon data from the observations of distant astrophysical sources, it is possible to constrain the Lorentz Symmetry breaking linear term in the standard photon dispersion relations. Gamma Ray Bursts (GRB) and flaring Active Galactic Nuclei (AGN) are complementary to each other for this purpose, since they are observed at different distances in different energy ranges and with different levels of variability. Following a previous publication of the High Energy Stereoscopic System (H.E.S.S.) collaboration [1], a more sensitive event-by-event method consisting of a likelihood fit is applied to PKS 2155-304 flare data of MJD 53944 (July 28, 2006) as used in the previous publication. The previous limit on the linear term is improved by a factor of similar to 3 up to M(QG)(1), > 2.1 X 10(1B) GeV and is currently the best result obtained with blazars. The sensitivity to the quadratic term is lower and provides a limit of M(QG)(q) > 6.4 x 10(10) GeV, which is the best value obtained so far with an AGN and similar to the best limits obtained with GRB. (C) 2011 Elsevier B.V. All rights reserved.
  •  
39.
  • Abramowski, A., et al. (författare)
  • Spectral Analysis and Interpretation of the γ-ray Emission from the Starburst Galaxy NGC 253
  • 2012
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 757:2, s. 158-
  • Tidskriftsartikel (refereegranskat)abstract
    • Very high energy (VHE; E >= 100 GeV) and high-energy (HE; 100 MeV <= E <= 100 GeV) data from gamma-ray observations performed with the H. E. S. S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE gamma-ray data can be described by a power law in energy with differential photon index Gamma = 2.14 +/- 0.18(stat) +/- 0.30(sys) and differential flux normalization at 1 TeV of F-0 = (9.6 +/- 1.5(stat)(+5.7, -2.9)(sys)) x 10(-14) TeV-1 cm(-2) s(-1). A power-law fit to the differential HE gamma-ray spectrum reveals a photon index of Gamma = 2.24 +/- 0.14(stat) +/- 0.03(sys) and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 +/- 1.0(stat) +/- 0.3(sys)) x 10(-9) cm(-2) s(-1). No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE gamma-ray data results in a differential photon index Gamma = 2.34 +/- 0.03 with a p-value of 30%. The gamma-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE gamma-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the gamma-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region.
  •  
40.
  • Abramowski, A., et al. (författare)
  • Very-high-energy gamma-ray emission from the direction of the Galactic globular cluster Terzan 5
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531, s. L18-
  • Tidskriftsartikel (refereegranskat)abstract
    • The HESS very-high-energy (VHE, E > 0.1 TeV) gamma-ray telescope system has discovered a new source, HESS J1747-248. The measured integral flux is (1.2 +/- 0.3) x 10(-12) cm(-2) s(-1) above 440 GeV for a power-law photon spectral index of 2.5 +/- 0.3(stat) +/- 0.2(sys). The VHE gamma-ray source is located in the close vicinity of the Galactic globular cluster Terzan 5 and extends beyond the HESS point spread function (0.07 degrees). The probability of a chance coincidence with Terzan 5 and an unrelated VHE source is quite low (similar to 10(-4)). With the largest population of identified millisecond pulsars (msPSRs), a very high core stellar density and the brightest GeV range flux as measured by Fermi-LAT, Terzan 5 stands out among Galactic globular clusters. The properties of the VHE source are briefly discussed in the context of potential emission mechanisms, notably in relation to msPSRs. Interpretation of the available data accommodates several possible origins for this VHE gamma-ray source, although none of them offers a satisfying explanation of its peculiar morphology.
  •  
41.
  • Acero, F., et al. (författare)
  • Detection of Gamma Rays from a Starburst Galaxy
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 326:5956, s. 1080-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of similar to 10(15) electron volts. We report the detection of gamma rays-tracers of such cosmic rays-from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H. E. S. S.) array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 billion electron volts is F = (5.5 +/- 1.0(stat) +/- 2.8(sys)) x 10(-13) cm(-2) s(-1), implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is five times as large as that in our Galaxy.
  •  
42.
  • Acero, F., et al. (författare)
  • Discovery and follow-up studies of the extended, off-plane, VHE gamma-ray source HESS J1507-622
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 525, s. A45-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The detection of gamma-rays in the very-high-energy (VHE) range (100 GeV-100 TeV) offers the possibility of studying the parent population of ultrarelativistic particles found in astrophysical sources, so it is useful for understanding the underlying astrophysical processes in nonthermal sources. Aims. The discovery of the VHE gamma-ray source HESS J1507-622 is reported and possibilities regarding its nature are investigated. Methods. The H. E. S. S. array of imaging atmospheric Cherenkov telescopes (IACTs) has a high sensitivity compared with previous instruments (similar to 1% of the Crab flux in 25 h observation time for a 5 sigma point-source detection) and has a large field of view (similar to 5 degrees in diameter). HESS J1507-622 was discovered within the ongoing H. E. S. S. survey of the inner Galaxy, and the source was also studied by means of dedicated multiwavelength observations. Results. A Galactic gamma-ray source, HESS J1507-622, located similar to 3.5 degrees. from the Galactic plane was detected with a statistical significance >9 sigma. Its energy spectrum is well fitted by a power law with spectral index Gamma = 2.24 +/- 0.16(stat) +/- 0.20(sys) and a flux above 1 TeV of (1.5 +/- 0.4(stat) +/- 0.3(sys)) x 10(-12) cm(-2) s(-1). Possible interpretations (considering both hadronic and leptonic models) of the VHE gamma-ray emission are discussed in the absence of an obvious counterpart.
  •  
43.
  • Acero, F., et al. (författare)
  • First detection of VHE gamma-rays from SN 1006 by HESS
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 516, s. A62-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Recent theoretical predictions of the lowest very high energy (VHE) luminosity of SN 1006 are only a factor 5 below the previously published HESS upper limit, thus motivating further in-depth observations of this source. Methods. Deep observations at VHE energies (above 100 GeV) were carried out with the high energy stereoscopic system (HESS) of Cherenkov Telescopes from 2003 to 2008. More than 100 h of data have been collected and subjected to an improved analysis procedure. Results. Observations resulted in the detection of VHE gamma-rays from SN 1006. The measured gamma-ray spectrum is compatible with a power-law, the flux is of the order of 1% of that detected from the Crab Nebula, and is thus consistent with the previously established HESS upper limit. The source exhibits a bipolar morphology, which is strongly correlated with non-thermal X-rays. Conclusions. Because the thickness of the VHE-shell is compatible with emission from a thin rim, particle acceleration in shock waves is likely to be the origin of the gamma-ray signal. The measured flux level can be accounted for by inverse Compton emission, but a mixed scenario that includes leptonic and hadronic components and takes into account the ambient matter density inferred from observations also leads to a satisfactory description of the multi-wavelength spectrum.
  •  
44.
  • Acero, F., et al. (författare)
  • HESS upper limits on very high energy gamma-ray emission from the microquasar GRS 1915+105
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 508:3, s. 1135-1140
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High energy particles reside in the relativistic jets of microquasars, making them possible sources of very high energy radiation (VHE, > 100 GeV). Detecting this emission would provide a new handle on jet physics. Aims. Observations of the microquasar GRS 1915+105 with the HESS telescope array were undertaken in 2004-2008 to search for VHE emission. Methods. Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the energy and direction of the incident gamma rays. Results. There is no evidence for a VHE gamma-ray signal either from the direction of the microquasar or its vicinity. An upper limit of 6.1 x 10(-13) ph cm(-2) s(-1) (99.9% confidence level) is set on the photon flux above 410 GeV, equivalent to a VHE luminosity of similar to 10(34) erg s(-1) at 11 kpc. Conclusions. The VHE to X-ray luminosity ratio in GRS 1915+105 is at least four orders of magnitude lower than the ratio observed in gamma-ray binaries. The VHE radiative efficiency of the compact jet is less than 0.01% based on its estimated total power of 10(38) erg s(-1). Particle acceleration in GRS 1915+105 is not efficient at high energies and/or the magnetic field is too strong. It is also possible that VHE gamma-rays are produced by GRS 1915+105, but the emission is highly time-dependent.
  •  
45.
  • Acero, F., et al. (författare)
  • Localizing the VHE gamma-ray source at the Galactic Centre
  • 2010
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 402:3, s. 1877-1882
  • Tidskriftsartikel (refereegranskat)abstract
    • The inner 10 pc of our Galaxy contains many counterpart candidates of the very high energy (VHE; > 100 GeV) gamma-ray point source HESS J1745-290. Within the point spread function of the H.E.S.S. measurement, at least three objects are capable of accelerating particles to VHE and beyond and of providing the observed gamma-ray flux. Previous attempts to address this source confusion were hampered by the fact that the projected distances between these objects were of the order of the error circle radius of the emission centroid (34 arcsec, dominated by the pointing uncertainty of the H.E.S.S. instrument). Here we present H.E.S.S. data of the Galactic Centre region, recorded with an improved control of the instrument pointing compared to H.E.S.S. standard pointing procedures. Stars observed during gamma-ray observations by optical guiding cameras mounted on each H.E.S.S. telescope are used for off-line pointing calibration, thereby decreasing the systematic pointing uncertainties from 20 to 6 arcsec per axis. The position of HESS J1745-290 is obtained by fitting a multi-Gaussian profile to the background-subtracted gamma-ray count map. A spatial comparison of the best-fitting position of HESS J1745-290 with the position and morphology of candidate counterparts is performed. The position is, within a total error circle radius of 13 arcsec, coincident with the position of the supermassive black hole Sgr A* and the recently discovered pulsar wind nebula candidate G359.95-0.04. It is significantly displaced from the centroid of the supernova remnant Sgr A East, excluding this object with high probability as the dominant source of the VHE gamma-ray emission.
  •  
46.
  • Acero, F., et al. (författare)
  • PKS2005-489 at VHE : four years of monitoring with HESS and simultaneous multi-wavelength observations
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 511, s. A52-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Our aim is to study the very high energy (VHE; E > 100 GeV) gamma-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods. VHE observations of the high-frequency peaked BL Lac object PKS 2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results. A strong VHE signal, similar to 17 sigma total, from PKS 2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is similar to 3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from similar to 300 GeV to similar to 5 TeV is characterized by a power law with a photon index, Gamma = 3.20 +/- 0.16(stat) +/- 0.10(syst). At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (Delta Gamma(X) approximate to 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions. The SED of PKS 2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005.
  •  
47.
  • Aharonian, F., et al. (författare)
  • Discovery of VHE gamma-rays from the BL Lacertae object PKS 0548-322
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. A69-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. PKS 0548-322 (z = 0.069) is a "high-frequency-peaked" BL Lac object and a candidate very high energy (VHE, E > 100 GeV) gamma-ray emitter, due to its high X-ray and radio flux. Observations at the VHE band provide insights into the origin of very energetic particles present in this source and the radiation processes at work. Methods. We report observations made between October 2004 and January 2008 with the HESS array, a four imaging atmospheric-Cherenkov telescopes. Contemporaneous UV and X-ray observations with the Swift satellite in November 2006 are also reported. Results. PKS 0548-322 is detected for the first time in the VHE band with HESS We measure an excess of 216 gamma-rays corresponding to a significance of 5.6 standard deviations. The photon spectrum of the source is described by a power-law, with a photon index of Gamma = 2.86 +/- 0.34(stat) +/- 0.10(sys). The integral flux above 200 GeV is similar to 1.3% of the flux of the Crab Nebula, and is consistent with being constant in time. Contemporaneous Swift/XRT observations reveal an X-ray flux between 2 and 10 keV of F2-10 keV = (2.3 +/- 0.2) x 10(-11) erg cm(-2) s(-1), an intermediate intensity state with respect to previous observations. The spectral energy distribution can be reproduced using a simple one-zone synchrotron self Compton model, with parameters similar those observed for other sources of this type.
  •  
48.
  • Aharonian, F., et al. (författare)
  • Probing the ATIC peak in the cosmic-ray electron spectrum with HESS
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 508:2, s. 561-564
  • Tidskriftsartikel (refereegranskat)abstract
    • The measurement of an excess in the cosmic-ray electron spectrum between 300 and 800 GeV by the ATIC experiment has - together with the PAMELA detection of a rise in the positron fraction up to approximate to 100 GeV - motivated many interpretations in terms of dark matter scenarios; alternative explanations assume a nearby electron source like a pulsar or supernova remnant. Here we present a measurement of the cosmic-ray electron spectrum with H. E. S. S. starting at 340 GeV. While the overall electron flux measured by H. E. S. S. is consistent with the ATIC data within statistical and systematic errors, the H. E. S. S. data exclude a pronounced peak in the electron spectrum as suggested for interpretation by ATIC. The H. E. S. S. data follow a power-law spectrum with spectral index of 3.0 +/- 0.1(stat.) +/- 0.3(syst.), which steepens at about 1 TeV.
  •  
49.
  • Aharonian, F., et al. (författare)
  • Very high energy gamma-ray observations of the binary PSR B1259-63/SS2883 around the 2007 Periastron
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 507:1, s. 389-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. This article presents very-high-energy (VHE; E > 100 GeV) data from the gamma-ray binary PSR B1259-63 as taken during the years 2005, 2006 and before as well as shortly after the 2007 periastron passage. These data extend the knowledge of the lightcurve of this object to all phases of the 3.4 year binary orbit. The lightcurve constrains physical mechanisms present in this TeV source. Methods. Observations of VHE gamma-rays with the HESS telescope array using the Imaging Atmospheric Cherenkov Technique were performed. The HESS instrument features an angular resolution of < 0.1 degrees and an energy resolution of < 20%. Gamma-ray events in an energy range of 0.5-70 TeV were recorded. From these data, energy spectra and lightcurve with a monthly time sampling were extracted. Results. VHE gamma-ray emission from PSR B1259-63 was detected with an overall significance of 9.5 standard deviations using 55 h of exposure, obtained from April to August 2007. The monthly flux of gamma-rays during the observation period was measured, yielding VHE lightcurve data for the early pre-periastron phase of the system for the first time. No spectral variability was found on timescales of months. The spectrum is described by a power law with a photon index of Gamma = 2.8 +/- 0.2(stat) +/- 0.2(sys) and flux normalisation Phi(0) = (1.1 +/- 0.1(stat) +/- 0.2(sys)) x 10(-12) TeV(-1) cm(-2) s(-1). PSR B1259-63 was also monitored in 2005 and 2006, far from periastron passage, comprising 8.9 h and 7.5 h of exposure, respectively. No significant excess of.-rays is seen in those observations. Conclusions. PSR B1259-63 has been re-confirmed as a variable TeV gamma-ray emitter. The firm detection of VHE photons emitted at a true anomaly theta approximate to -0.35 of the pulsar orbit, i.e. already similar to 50 days prior to the periastron passage, disfavors the stellar disc target scenario as a primary emission mechanism, based on current knowledge about the companion star's disc inclination, extension, and density profile.
  •  
50.
  • Abdalla, H., et al. (författare)
  • A search for new supernova remnant shells in the Galactic plane with HESS
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912 + 101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 161

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy