SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruegg J) "

Sökning: WFRF:(Ruegg J)

  • Resultat 1-50 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Cediel Ulloa, Andrea, et al. (författare)
  • Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study
  • 2021
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 147
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundMethylmercury (MeHg) is present in fish and is a neurotoxicant at sufficiently high levels. One potential mechanism of MeHg toxicity early in life is epigenetic dysregulation that may affect long-term neurodevelopment. Altered DNA methylation of nervous system-related genes has been associated with adult mental health outcomes.ObjectiveTo assess associations between prenatal MeHg exposure and DNA methylation (at the cytosine of CG dinucleotides, CpGs) in three nervous system-related genes, encoding brain-derived neurotropic factor (BDNF), glutamate receptor subunit NR2B (GRIN2B), and the glucocorticoid receptor (NR3C1), in children who were exposed to MeHg in utero.MethodsWe tested 406 seven-year-old Seychellois children participating in the Seychelles Child Development Study (Nutrition Cohort 2), who were prenatally exposed to MeHg from maternal fish consumption. Total mercury in maternal hair (prenatal MeHg exposure measure) collected during pregnancy was measured using atomic absorption spectroscopy. Methylation in DNA from the children’s saliva was measured by pyrosequencing. To assess associations between prenatal MeHg exposure and CpG methylation at seven years of age, we used multivariable linear regression models adjusted for covariates.ResultsWe identified associations with prenatal MeHg exposure for DNA methylation of one GRIN2B CpG and two NR3C1 CpGs out of 12 total CpG sites. Higher prenatal MeHg was associated with higher methylation for each CpG site. For example, NR3C1 CpG3 had an expected increase of 0.03-fold for each additional 1 ppm of prenatal MeHg (B = 0.030, 95% CI 0.001, 0.059; p = 0.047). Several CpG sites associated with MeHg are located in transcription factor binding sites and the observed methylation changes are predicted to lead to lower gene expression.ConclusionsIn a population of people who consume large amounts of fish, we showed that higher prenatal MeHg exposure was associated with differential DNA methylation at seven years of age at specific CpG sites that may influence neurodevelopment and mental health.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Song, J., et al. (författare)
  • Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 110:31
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a unique extracellular matrix (ECM) niche in the spleen, the marginal zone (MZ), characterized by the basement membrane glycoproteins, laminin alpha 5 and agrin, that promotes formation of a specialized population of MZ B lymphocytes that respond rapidly to blood-borne antigens. Mice with reduced laminin alpha 5 expression show reduced MZ B cells and increased numbers of newly formed (NF) transitional B cells that migrate from the bone marrow, without changes in other immune or stromal cell compartments. Transient integrin alpha 6 beta 1-mediated interaction of NF B cells with laminin alpha 5 in the MZ supports the MZ B-cell population, their long-term survival, and antibody response. Data suggest that the unique 3D structure and biochemical composition of the ECM of lymphoid organs impacts on immune cell fate.
  •  
8.
  • Barde, Swapnali, et al. (författare)
  • Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide
  • 2016
  • Ingår i: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 113:52, s. E8472-E8481
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL(1-3), are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region- and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL(3) antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation.
  •  
9.
  • Caporale, N., et al. (författare)
  • From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375:6582
  • Tidskriftsartikel (refereegranskat)abstract
    • Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay. © 2022 American Association for the Advancement of Science. All rights reserved.
  •  
10.
  •  
11.
  • Gao, S., et al. (författare)
  • Manifolds of magnetic ordered states and excitations in the almost Heisenberg pyrochlore antiferromagnet MgCr2 O4
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 97:13
  • Tidskriftsartikel (refereegranskat)abstract
    • In spinels ACr2O4(A=Mg, Zn), realization of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et al. [Pow. Diff. 17, 230 (2002)PODIE20885-715610.1154/1.1479738], while other features depend on sample or cooling protocol. A complex, partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(12120),k2=(1012) appear. The ordered moment reaches 1.94(3) μB/Cr3+ for k1 and 2.08(3) μB/Cr3+ for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1-10] diagonals and a smaller c component. We use inelastic neutron scattering to investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of clusterlike excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders.
  •  
12.
  •  
13.
  •  
14.
  • Lupu, D, et al. (författare)
  • Fluoxetine modulates sex steroid levels in vitro
  • 2017
  • Ingår i: Clujul medical (1957). - : Clujul Medical. - 1222-2119. ; 90:4, s. 420-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims. Selective serotonin reuptake inhibitors (SSRIs) are antidepressants increasingly prescribed against depression during and after pregnancy. However, these compounds cross the placenta and are found in breast milk, thus reaching, and possibly affecting, the fetus and infant during critical developmental stages. Fluoxetine (FLX), a widely used SSRI, can interfere with estrogen signaling, which is important for the development of  female sex organs and certain brain areas, among others. Interference with estrogen signaling can take place on different levels, e.g., by affecting receptor activity or hormone levels. FLX has previously been shown to induce estrogen receptor-dependent transcription in vitro at high concentrations. In this study we set out to assess effects of FLX on estradiol levels in vitro.Methods. FLX was tested using the OECD recommended H295R model, a human adrenocortical carcinoma cell line that is able to produce all steroid hormones found in the gonads and adrenal glands, including estradiol and testosterone. H295R cells were incubated with different doses of FLX for 48h. Subsequently, concentrations of these two steroids were measured in cell culture medium after FLX exposure, using liquid chromatography coupled with tandem mass spectrometry. Aromatase mRNA expression was assessed using qPCR.Results. Fluoxetine significantly increased estradiol secretion in H295R cells after a 48h exposure at low, submicromolar concentrations, but showed no effects on testosterone levels or aromatase mRNA expression.Conclusion. Fluoxetine has the potential to interfere with estrogenic signaling by increasing estradiol secretion at low concentrations, which are relevant for fetal and adult human exposure.
  •  
15.
  • Nowak-Sliwinska, Patrycja, et al. (författare)
  • Consensus guidelines for the use and interpretation of angiogenesis assays
  • 2018
  • Ingår i: Angiogenesis. - : Springer. - 0969-6970 .- 1573-7209. ; 21:3, s. 425-532
  • Forskningsöversikt (refereegranskat)abstract
    • The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
  •  
16.
  •  
17.
  • Skoulatos, M., et al. (författare)
  • Dimensional reduction by pressure in the magnetic framework material CuF2(D2O)(2)( pyz) : From spin-wave to spinon excitations
  • 2017
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 96:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal organic magnets have enormous potential to host a variety of electronic and magnetic phases that originate from a strong interplay between the spin, orbital, and lattice degrees of freedom. We control this interplay in the quantum magnet CuF2(D2O)(2)( pyz) by using high pressure to drive the system through structural and magnetic phase transitions. Using neutron scattering, we show that the low pressure state, which hosts a two-dimensional square lattice with spin-wave excitations and a dominant exchange coupling of 0.89 meV, transforms at high pressure into a one-dimensional spin chain hallmarked by a spinon continuum and a reduced exchange interaction of 0.43 meV. This direct microscopic observation of a magnetic dimensional crossover as a function of pressure opens up new possibilities for studying the evolution of fractionalised excitations in low-dimensional quantum magnets and eventually pressure-controlled metal-insulator transitions.
  •  
18.
  •  
19.
  • Tal, Tamara, et al. (författare)
  • New approach methods to assess developmental and adult neurotoxicity for regulatory use : a PARC work package 5 project
  • 2024
  • Ingår i: Frontiers in Toxicology. - : Frontiers Media S.A.. - 2673-3080. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.
  •  
20.
  •  
21.
  • Tay, Nicole, et al. (författare)
  • Allele-Specific Methylation of SPDEF : A Novel Moderator of Psychosocial Stress and Substance Abuse
  • 2019
  • Ingår i: American Journal of Psychiatry. - : AMER PSYCHIATRIC PUBLISHING, INC. - 0002-953X .- 1535-7228. ; 176:2, s. 146-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Psychosocial stress is a key risk factor for substance abuse among adolescents. Recently, epigenetic processes such as DNA methylation have emerged as potential mechanisms that could mediate this relationship. The authors conducted a genome-wide methylation analysis to investigate whether differentially methylated regions are associated with psychosocial stress in an adolescent population.Methods: A methylome-wide analysis of differentially methylated regions was used to examine a sample of 1,287 14-year-old adolescents (50.7% of them female) from the European IMAGEN study. The Illumina 450k array was used to assess DNA methylation, pyrosequencing was used for technical replication, and linear regression analyses were used to identify associations with psychosocial stress and substance use (alcohol and tobacco). Findings were replicated by pyrosequencing a test sample of 413 participants from the IMAGEN study.Results: Hypermethylation in the sterile alpha motif/pointed domain containing the ETS transcription factor (SPDEF) gene locus was associated with a greater number of stressful life events in an allele-dependent way. Among individuals with the minor G-allele, SPDEF methylation moderated the association between psychosocial stress and substance abuse. SPDEF methylation interacted with lifetime stress in gray matter volume in the right cuneus, which in turn was associated with the frequency of alcohol and tobacco use. SPDEF was involved in the regulation of trans-genes linked to substance use.Conclusions: Taken together, the study findings describe a novel epigenetic mechanism that helps explain how psychosocial stress exposure influences adolescent substance abuse.
  •  
22.
  •  
23.
  • Arner, Anders, et al. (författare)
  • Influence of ATP, ADP and AMPPNP on the energetics of contraction in skinned smooth muscle
  • 1987
  • Ingår i: Progress in Clinical and Biological Research. - 0361-7742. ; 245, s. 43-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The contraction of smooth muscle is influenced by the substrate MgATP and the product MgADP. The effects on force, shortening velocity and ATP-turnover, are consistent with an influence on the kinetics of cross-bridge cycling. Part of these effects are mediated via an influence on the regulation of contraction by myosin light chain phosphorylation. Results from preparations activated by thiophosphorylation, show that MgATP and MgADP also interact directly at the cross-bridge level, and are consistent with MgADP acting as a competitive ATP-analogue. The slow shortening velocity and decreased rate of ATP-induced relaxation from rigor in the presence of MgADP, suggest an inhibition of cross-bridge detachment. The rate of ATP-turnover was decreased in the presence of the nonhydrolyzable ATP-analogue AMPPNP. These results may contribute to the characterization of the biochemical reactions in the structurally organized smooth muscle contractile system. In addition, the influence of MgATP and MgADP on smooth muscle contraction suggest that the concentrations of substrate and products, at the level of the contractile proteins, may constitute important regulatory factors in vivo under conditions, such as hypoxia and ischemia, associated with impaired cellular energy supply.
  •  
24.
  •  
25.
  •  
26.
  • Cediel-Ulloa, Andrea, 1989- (författare)
  • Novel Endpoints To Unravel Developmental Neurotoxicity : From DNA methylation responses to methylmercury to the in vitro identification of endocrine disruptors
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The developing brain is especially sensitive to environmental stressors due to its dependence on the precise spatiotemporal regulation of multiple signals, and the long time period required for its formation. Some chemicals can interfere with molecular and cellular processes driving brain development, including epigenetic processes such as DNA methylation. Hence, identification of DNA methylation changes induced by chemical exposure may serve as early molecular markers for developmental neurotoxicity (DNT). Chemicals known as endocrine disruptors (EDCs) can produce adverse effects due to their capability to alter the endocrine system. Since brain development is highly dependent on endocrine signals, the potential adverse effects of EDCs on brain development needs to be addressed. Detection of DNT in the regulatory context has been based on in vivo testing, however, the financial costs and time intensive characteristics of these methods have resulted in a limited assessment of the DNT hazard of chemicals. In addition, in order to regulate EDCs, it is paramount to demonstrate that their adverse effects are a product of disruption of endocrine signals. Yet, at the moment, there are no approved methods which address both an endocrine mode of action and adverse neurodevelopmental outcomes. This doctoral thesis had two main aims: Firstly, to identify epigenetic changes, at the level of DNA methylation, underlying DNT induced by exposure to methylmercury (MeHg); and secondly, to develop new approach methods (NAMs) for the detection of DNT induced by endocrine disruption. Epigenetic effects were studied both in epidemiological data and experimentally in vitro. Associations between prenatal MeHg exposure and DNA methylation of GRIN2B and NR3C1 were found in children. In vitro validation of DNA methylation changes found in epigenome-wide association studies of populations exposed to MeHg, uncovered the potential involvement of the Mediator Complex Subunit 31 (MED31) in MeHg DNT. To contribute to the endocrine disruption (ED)-induced DNT field, the applicability of an in vitro model composed of murine neural progenitor cells (the C17.2 cell-line) was evaluated. We found that C17.2 neural differentiation and morphology were sensitive to retinoic acid (RAR), retinoic X (RXR), peroxisome proliferator-activated β/δ (PPARβ/δ), and glucocorticoid (GR) agonism. Furthermore, two out of 25 tested EDCs decreased neurite outgrowth and branching in the C17.2 system. These effects were recovered by co-exposure of the chemicals with antagonists of RAR, RXR, or PPARβ/δ, indicating that their DNT effect is mediated by hormonal disruption. Altogether, this thesis contributed to the development of new methodologies and endpoints for the assessment of DNT induced by MeHg and EDCs.  
  •  
27.
  •  
28.
  • Drakvik, E., et al. (författare)
  • Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment
  • 2020
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 134
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of anthropogenic chemicals, manufactured, by-products, metabolites and abiotically formed transformation products, counts to hundreds of thousands, at present. Thus, humans and wildlife are exposed to complex mixtures, never one chemical at a time and rarely with only one dominating effect. Hence there is an urgent need to develop strategies on how exposure to multiple hazardous chemicals and the combination of their effects can be assessed. A workshop, “Advancing the Assessment of Chemical Mixtures and their Risks for Human Health and the Environment” was organized in May 2018 together with Joint Research Center in Ispra, EU-funded research projects and Commission Services and relevant EU agencies. This forum for researchers and policy-makers was created to discuss and identify gaps in risk assessment and governance of chemical mixtures as well as to discuss state of the art science and future research needs. Based on the presentations and discussions at this workshop we want to bring forward the following Key Messages: • We are at a turning point: multiple exposures and their combined effects require better management to protect public health and the environment from hazardous chemical mixtures. • Regulatory initiatives should be launched to investigate the opportunities for all relevant regulatory frameworks to include prospective mixture risk assessment and consider combined exposures to (real-life) chemical mixtures to humans and wildlife, across sectors. • Precautionary approaches and intermediate measures (e.g. Mixture Assessment Factor) can already be applied, although, definitive mixture risk assessments cannot be routinely conducted due to significant knowledge and data gaps. • A European strategy needs to be set, through stakeholder engagement, for the governance of combined exposure to multiple chemicals and mixtures. The strategy would include research aimed at scientific advancement in mechanistic understanding and modelling techniques, as well as research to address regulatory and policy needs. Without such a clear strategy, specific objectives and common priorities, research, and policies to address mixtures will likely remain scattered and insufficient. © 2019 The Authors
  •  
29.
  • Efstathopoulos, P, et al. (författare)
  • NR3C1 hypermethylation in depressed and bullied adolescents
  • 2018
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8:1, s. 121-
  • Tidskriftsartikel (refereegranskat)abstract
    • The disruption of key epigenetic processes during critical periods of brain development can increase an individual’s vulnerability to psychopathology later in life. For instance, DNA methylation in the glucocorticoid receptor gene (NR3C1) in adulthood is known to be associated with early-life adversities and has been suggested to mediate the development of stress-related disorders. However, the association between NR3C1 methylation and the emergence of internalizing symptoms in childhood and adolescence has not been studied extensively. In the present report, we used saliva DNA from a cohort of Swedish adolescents (13–14 years old; N = 1149) to measure NR3C1 methylation in the exon 1F region. Internalizing psychopathological symptoms were assessed using the Center for Epidemiologic Studies Depression Scale for Children (CES-DC). We found that NR3C1 hypermethylation was cross-sectionally associated with high score for internalizing symptoms in the whole group as well as among the female participants. In addition, an analysis of social environmental stressors revealed that reports of bullied or lacking friends were significantly associated with NR3C1 hypermethylation. This cross-sectional association of NR3C1 exon 1F hypermethylation with internalizing psychopathology in adolescents, as well as with bullying and lack of friends are novel results in this field. Longitudinal studies are needed to address whether NR3C1 methylation mediates the link between social stressors and psychopathology in adolescence.
  •  
30.
  • Engdahl, Elin, et al. (författare)
  • Bisphenol A Inhibits the Transporter Function of the Blood-Brain Barrier by Directly Interacting with the ABC Transporter Breast Cancer Resistance Protein (BCRP)
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA's known impact on neurodevelopment.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Jacobs, MN, et al. (författare)
  • Marked for Life: Epigenetic Effects of Endocrine Disrupting Chemicals
  • 2017
  • Ingår i: ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 42. - : Annual Reviews. - 1543-5938 .- 1545-2050. - 9780824323424 ; 42, s. 105-160
  • Forskningsöversikt (övrigt vetenskapligt/konstnärligt)abstract
    • The presence of human-made chemical contaminants in the environment has increased rapidly during the past 70 years. Harmful effects of such contaminants were first reported in the late 1950s in wildlife and later in humans. These effects are predominantly induced by endocrine disrupting chemicals (EDCs), chemicals that mimic the actions of endogenous hormones and leave marks at several levels of organization in organisms, from physiological outcomes (phenotypes) to molecular alterations, including epigenetic modifications. Epigenetic mechanisms play pivotal roles in the developmental processes that contribute to determining adult phenotypes, through so-called epigenetic programming. While there is increasing evidence that EDC exposure during sensitive periods of development can perturb epigenetic programming, it is unclear whether these changes are truly predictive of adverse outcomes. Understanding the mechanistic links between EDC-induced epigenetic changes and phenotypic endpoints will be critical for providing improved regulatory tools to better protect the environment and human health from exposure to EDCs.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  • Meng, Weida, et al. (författare)
  • Genotype-dependent epigenetic regulation of DLGAP2 in alcohol use and dependence
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:8, s. 4367-4382
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol misuse is a major public health problem originating from genetic and environmental risk factors. Alterations in the brain epigenome may orchestrate changes in gene expression that lead to alcohol misuse and dependence. Through epigenome-wide association analysis of DNA methylation from human brain tissues, we identified a differentially methylated region, DMR-DLGAP2, associated with alcohol dependence. Methylation within DMR-DLGAP2 was found to be genotype-dependent, allele-specific and associated with reward processing in brain. Methylation at the DMR-DLGAP2 regulated expression of DLGAP2 in vitro, and Dlgap2-deficient mice showed reduced alcohol consumption compared with wild-type controls. These results suggest that DLGAP2 may be an interface for genetic and epigenetic factors controlling alcohol use and dependence.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Smith, William J., et al. (författare)
  • Limited domestic introgression in a final refuge of the wild pigeon
  • 2022
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 25:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Domesticated animals have been culturally and economically important throughout history. Many of their ancestral lineages are extinct or genetically endangered following hybridization with domesticated relatives. Consequently, they have been understudied compared to the ancestral lineages of domestic plants. The domestic pigeon Columba livia, which was pivotal in Darwin's studies, has maintained outsized cultural significance. Its role as a model organism spans the fields of behavior, genetics, and evolution. Domestic pigeons have hybridized with their progenitor, the Rock Dove, rendering the latter of dubious genetic status. Here, we use genomic and morphological data from the putative Rock Doves of the British Isles to identify relictual undomesticated populations. We reveal that Outer Hebridean Rock Doves have experienced minimal levels of introgression. Our results outline the contemporary status of these wild pigeons, high-lighting the role of hybridization in the homogenization of genetic lineages.
  •  
47.
  • Sparrow, M P, et al. (författare)
  • Isoforms of myosin in smooth muscle
  • 1987
  • Ingår i: Progress in Clinical and Biological Research. - 0361-7742. ; 245, s. 67-79
  • Tidskriftsartikel (refereegranskat)
  •  
48.
  • Sparrow, Malcolm P, et al. (författare)
  • Myosin composition and functional properties of smooth muscle from the uterus of pregnant and non-pregnant rats
  • 1988
  • Ingår i: Pflügers Archiv. - 0031-6768. ; 412:6, s. 624-633
  • Tidskriftsartikel (refereegranskat)abstract
    • The myosin heavy chain stoichiometry and the force-velocity relation have been determined in the myometrium of the non-pregnant and pregnant rat. The relative proportions of the slower migrating heavy chain (MHC1) greatly exceeded that of the faster migrating heavy chain (MHC2) as shown by electrophoresis on SDS 4%-polyacrylamide gels. The ratios of MHC1/MHC2 were 2.2/1 in the non-pregnant rats, 2.6/1 in the pregnant rat, and contrasted with 0.8/1 in the rat portal vein. This stoichiometry was unchanged by extracting the myosin from the smooth muscle as native myosin in a salt extract, as dissociated myosin using sodium dodecyl sulphate (SDS) or by isolating the native myosin first by a non-dissociating (pyrophosphate) electrophoresis step and subsequently analysing the protein bands on the SDS 4%-polyacrylamide gel. Although the unequal proportions of the heavy chains suggested the possibility that the native myosin molecule may be arranged as homodimeric heavy chains, no evidence for or against the existence of native myosin isoforms could be obtained by electrophoresing native myosin extracts on pyrophosphate-polyacrylamide gels. The force-velocity relations of the intact electrically stimulated myometrium from the non-pregnant and pregnant rats gave isometric force of 45 and 135 mN/mm2 and Vmax of 0.71 and 0.52 lengths/s (37 degrees C) when measured at 95% of optimal length, whereas in chemically skinned uterine strips at 22 degrees C Vmax was 0.09 and 0.13 lengths/s, respectively. The length-force relationship was of similar shape in the non-gravid and gravid skinned tissues. The energetic tension cost (ATP-turnover/active stress) in skinned fibres was also similar. The mechanical and metabolic characteristics of the gravid and non-gravid uterus found in the present study do not suggest an obvious difference in the intrinsic properties of the myosin, although significant functional alterations in the tissue appear during pregnancy. This corresponds to the lack of a difference in the pattern of the heavy chains.
  •  
49.
  • Spulber, S., et al. (författare)
  • Methylmercury interferes with glucocorticoid receptor : Potential role in the mediation of developmental neurotoxicity
  • 2018
  • Ingår i: Toxicology and Applied Pharmacology. - : Academic Press. - 0041-008X .- 1096-0333. ; 354, s. 94-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Methylmercury (MeHg) is a widespread environmental contaminant with established developmental neurotoxic effects. Computational models have identified glucocorticoid receptor (GR) signaling to be a key mediator behind the birth defects induced by Hg, but the mechanisms were not elucidated. Using molecular dynamics simulations, we found that MeHg can bind to the GR protein at Cys736 (located close to the ligand binding site) and distort the conformation of the ligand binging site. To assess the functional consequences of MeHg interaction with GR, we used a human cell line expressing a luciferase reporter system (HeLa AZ-GR). We found that 100 nM MeHg does not have any significant effect on GR activity alone, but the transactivation of gene expression by GR upon Dex (a synthetic GR agonist) administration was reduced in cells pre-treated with MeHg. Similar effects were found in transgenic zebrafish larvae expressing a GR reporter system (SR4G). Next we asked whether the effects of developmental exposure to MeHg are mediated by the effects on GR. Using a mutant zebrafish line carrying a loss-of-function mutation in the GR (grs(357)) we could show that the effects of developmental exposure to 2.5 nM MeHg are mitigated in absence of functional GR signaling. Taken together, our data indicate that inhibition of GR signaling may have a role in the developmental neurotoxic effects of MeHg.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 53
Typ av publikation
tidskriftsartikel (41)
konferensbidrag (9)
forskningsöversikt (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (42)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Ruegg, J (31)
Rüegg, Joelle (9)
Pongratz, I (9)
Pettersson, K (3)
Arner, Anders (3)
Sarkisyan, Daniil (3)
visa fler...
Bakalkin, Georgy (3)
Ekström, Tomas J. (3)
Hellstrand, Per (3)
Ekstrom, TJ (3)
Nalvarte, I. (3)
Varshney, M. (3)
Liu, Yun (3)
Fries, GR (3)
Gassen, NC (3)
Rein, T (3)
Lupu, D (3)
Ferrari, P. (2)
Testa, G (2)
Bleich, Stefan (2)
Gustafsson, JA (2)
Bornehag, Carl-Gusta ... (2)
Alavian-Ghavanini, A (2)
Damdimopoulou, P (2)
Biernacka, Joanna M (2)
Kapczinski, F (2)
Ruegg, J C (2)
Bergman, Åke, 1950- (2)
Cai, W. (2)
Harris, Adrian L. (2)
Prud'homme, J (2)
Karpyak, Victor M. (2)
Schumann, Gunter (2)
Engdahl, Elin (2)
Borbely, G (2)
Ruegg, C. (2)
White, J. S. (2)
Kitraki, E. (2)
Öberg, M. (2)
Demeneix, B. (2)
Di Criscio, Michela (2)
van der Burg, B. (2)
Wahlstrom, D (2)
Vasconcelos-Moreno, ... (2)
Gubert, C (2)
dos Santos, BTMQ (2)
Sartori, J (2)
Eisele, B (2)
Fijtman, A (2)
Kauer-Sant'Anna, M (2)
visa färre...
Lärosäte
Karolinska Institutet (41)
Uppsala universitet (11)
Lunds universitet (8)
Göteborgs universitet (3)
Kungliga Tekniska Högskolan (3)
Linköpings universitet (3)
visa fler...
Umeå universitet (2)
Stockholms universitet (2)
Örebro universitet (2)
Karlstads universitet (2)
Sveriges Lantbruksuniversitet (2)
visa färre...
Språk
Engelska (53)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (18)
Naturvetenskap (9)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy