SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruess Liliane) "

Sökning: WFRF:(Ruess Liliane)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brose, Ulrich, et al. (författare)
  • Body sizes of consumers and their resources
  • 2005
  • Ingår i: Ecology. - : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 86:9, s. 2545-2545
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic information—who eats whom—and species’ body sizes are two of the most basic descriptions necessary to understand community structure as well as ecological and evolutionary dynamics. Consumer–resource body size ratios between predators and their prey, and parasitoids and their hosts, have recently gained increasing attention due to their important implications for species’ interaction strengths and dynamical population stability. This data set documents body sizes of consumers and their resources. We gathered body size data for the food webs of Skipwith Pond, a parasitoid community of grass-feeding chalcid wasps in British grasslands; the pelagic community of the Benguela system, a source web based on broom in the United Kingdom; Broadstone Stream, UK; the Grand Caric¸aie marsh at Lake Neuchaˆtel, Switzerland; Tuesday Lake, USA; alpine lakes in the Sierra Nevada of California; Mill Stream, UK; and the eastern Weddell Sea Shelf, Antarctica. Further consumer–resource body size data are included for planktonic predators, predatory nematodes, parasitoids, marine fish predators, freshwater invertebrates, Australian terrestrial consumers, and aphid parasitoids. Containing 16 807 records, this is the largest data set ever compiled for body sizes of consumers and their resources. In addition to body sizes, the data set includes information on consumer and resource taxonomy, the geographic location of the study, the habitat studied, the type of the feeding interaction (e.g., predacious, parasitic) and the metabolic categories of the species (e.g., invertebrate, ectotherm vertebrate). The present data set was gathered with the intent to stimulate research on effects of consumer–resource body size patterns on food-web structure, interaction-strength distributions, population dynamics, and community stability. The use of a common data set may facilitate cross-study comparisons and understanding of the relationships between different scientific approaches and models.
  •  
2.
  • Haubert, Dominique, et al. (författare)
  • Trophic structure and major trophic links in conventional vs organic farming systems as indicated by carbon stable isotope ratios of fatty acids
  • 2009
  • Ingår i: Oikos. - : Wiley. - 1600-0706 .- 0030-1299. ; 118:10, s. 1579-1589
  • Tidskriftsartikel (refereegranskat)abstract
    • Using bulk tissue and fatty acid 13C analysis we investigated major trophic pathways from soil microorganisms to microbial consumers to predators in conventional versus organic farming systems planted for the first time with maize. Organic farming led to an increase in microbial biomass in particular that of fungi as indicated by phospholipid fatty acids (PLFAs). Microbial PLFAs reflected the conversion from C3 to C4 plants by a shift in δ13C of 2‰, whereas the isotopic signal in fatty acids (FAs) of Collembola was much more pronounced. In the euedaphic Protaphorura fimata the δ13C values in maize fields exceeded that in C3 (soybean) fields by up to 10‰, indicating a close relationship between diet and vegetation cover. In the epedaphic Orchesella villosaδ13C values shifted by 4‰, suggesting a wider food spectrum including carbon of former C3 crop residues. Differences in δ13C of corresponding FAs in consumers and resources were assessed to assign food web links. P. fimata was suggested as root and fungal feeder in soybean fields, fungal feeder in conventional and leaf consumer in organically managed maize fields. O. villosa likely fed on root and bacteria under soybean, and bacteria and fungi under maize. Comparison of δ13C values in FAs of the cursorial spider Pardosaagrestis and O. villosa implied the latter as important prey species in soybean fields. In contrast, the web-building spider Mangora acalypha showed no predator–prey relationship with Collembola. The determination of δ13C values in trophic biomarker FAs allowed detailed insight into the structure of the decomposer food web and identified diet-shifts in both consumers at the base of the food web and in top predators in organic versus conventional agricultural systems. The results indicate changes in major trophic links and therefore carbon flux through the food web by conversion of conventional into organic farming systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy