SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruggenthaler Michael) "

Sökning: WFRF:(Ruggenthaler Michael)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schnappinger, Thomas, et al. (författare)
  • Cavity Born–Oppenheimer Hartree–Fock Ansatz : Light–Matter Properties of Strongly Coupled Molecular Ensembles
  • 2023
  • Ingår i: The Journal of Physical Chemistry Letters. - 1948-7185. ; 14:36, s. 8024-8033
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental studies indicate that optical cavities can affect chemical reactions through either vibrational or electronic strong coupling and the quantized cavity modes. However, the current understanding of the interplay between molecules and confined light modes is incomplete. Accurate theoretical models that take into account intermolecular interactions to describe ensembles are therefore essential to understand the mechanisms governing polaritonic chemistry. We present an ab initio Hartree–Fock ansatz in the framework of the cavity Born–Oppenheimer approximation and study molecules strongly interacting with an optical cavity. This ansatz provides a nonperturbative, self-consistent description of strongly coupled molecular ensembles, taking into account the cavity-mediated dipole self-energy contributions. To demonstrate the capability of the cavity Born–Oppenheimer Hartree–Fock ansatz, we study the collective effects in ensembles of strongly coupled diatomic hydrogen fluoride molecules. Our results highlight the importance of the cavity-mediated intermolecular dipole–dipole interactions, which lead to energetic changes of individual molecules in the coupled ensemble.
  •  
2.
  • Schäfer, Christian, 1989, et al. (författare)
  • Making ab initio QED functional(s): Nonperturbative and photon-free effective frameworks for strong light-matter coupling
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong light-matter coupling provides a promising path for the control of quantum matter where the latter is routinely described from first principles. However, combining the quantized nature of light with this ab initio tool set is challenging and merely developing as the coupled light-matter Hilbert space is conceptually different and computational cost quickly becomes overwhelming. In this work, we provide a nonperturbative photon-free formulation of quantum electrodynamics (QED) in the long-wavelength limit, which is formulated solely on the matter Hilbert space and can serve as an accurate starting point for such ab initio methods. The present formulation is an extension of quantum mechanics that recovers the exact results of QED for the zero and infinite-coupling limit and the infinite-frequency as well as the homogeneous limit, and we can constructively increase its accuracy. We show how this formulation can be used to devise approximations for quantum-electrodynamical density-functional theory (QEDFT), which in turn also allows us to extend the ansatz to the full minimal-coupling problem and to nonadiabatic situations. Finally, we provide a simple local density-type functional that takes the strong coupling to the transverse photon degrees of freedom into account and includes the correct frequency and polarization dependence. This QEDFT functional accounts for the quantized nature of light while remaining computationally simple enough to allow its application to a large range of systems. All approximations allow the seamless application to periodic systems.
  •  
3.
  • Sidler, Dominik, et al. (författare)
  • A perspective on ab initio modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity
  • 2022
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 1089-7690 .- 0021-9606. ; 156:23
  • Tidskriftsartikel (refereegranskat)abstract
    • This Perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry, which emerges from the hybrid nature of strongly coupled light-matter states. To tackle this complexity, the importance of ab initio methods is highlighted. Based on those, novel ideas and research avenues are developed with respect to quantum collectivity, as well as for resonance phenomena immanent in reaction rates under vibrational strong coupling. Indeed, fundamental theoretical questions arise about the mesoscopic scale of quantum-collectively coupled molecules when considering the depolarization shift in the interpretation of experimental data. Furthermore, to rationalize recent findings based on quantum electrodynamical density-functional theory (QEDFT), a simple, but computationally efficient, Langevin framework is proposed based on well-established methods from molecular dynamics. It suggests the emergence of cavity-induced non-equilibrium nuclear dynamics, where thermal (stochastic) resonance phenomena could emerge in the absence of external periodic driving. Overall, we believe that the latest ab initio results indeed suggest a paradigmatic shift for ground-state chemical reactions under vibrational strong coupling from the collective quantum interpretation toward a more local, (semi)-classically and non-equilibrium dominated perspective. Finally, various extensions toward a refined description of cavity-modified chemistry are introduced in the context of QEDFT, and future directions of the field are sketched.
  •  
4.
  • Sidler, Dominik, et al. (författare)
  • Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling
  • 2024
  • Ingår i: The Journal of Physical Chemistry Letters. - 1948-7185. ; 15:19, s. 5208-5214
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit. We do so by first showing that the full nonrelativistic Pauli–Fierz problem of an ensemble of strongly coupled molecules in the dilute-gas limit reduces in the cavity Born–Oppenheimer approximation to a cavity–Hartree equation for the electronic structure. Consequently, each individual molecule experiences a self-consistent coupling to the dipoles of all other molecules, which amount to non-negligible values in the thermodynamic limit (large ensembles). Thus, collective vibrational strong coupling can alter individual molecules strongly for localized ”hotspots” within the ensemble. Moreover, the discovered cavity-induced polarization pattern possesses a zero net polarization, which resembles a continuous form of a spin glass (or better polarization glass). Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure, which can give rise to numerous, so far overlooked, physical mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy